108
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Starch-assisted synthesis of WO3 nanoparticles for degradation of crystal violet dye

&
Pages 1124-1136 | Received 05 Sep 2022, Accepted 19 Dec 2022, Published online: 03 Jan 2023

References

  • Biju R, Ravikumar R, Thomas C, et al. Enhanced photocatalytic degradation of Metanil Yellow dye using polypyrrole-based copper oxide–zinc oxide nanocomposites under visible light. J Nanopart Res. 2022;24:117. DOI:10.1007/s11051-022-05495-3
  • Alharthi FA, Alanazi HS, Alotaibi KM, et al. Photodegradation of methylene blue and Rose Bengal employing g-C3N4/ZnWO4 nanocatalysts under ultraviolet light irradiation. J Nanopart Res. 2022;24:125. DOI:10.1007/s11051-022-05510-7
  • Al-Tohamy R, Ali SS, Li F, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160. DOI:10.1016/j.ecoenv.2021.113160
  • Kant R. Textile dyeing industry an environmental hazard. Nat Sci. 2012;4:22–26. DOI:10.4236/ns.2012.41004
  • Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, et al. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules. 2021;26(13):3813. DOI:10.3390/molecules26133813
  • Foroutan R, Peighambardoust SJ, Boffito DC, et al. Sono-Photocatalytic activity of cloisite 30B/ZnO/Ag2O nanocomposite for the simultaneous degradation of crystal violet and methylene blue dyes in aqueous media. Nanomaterials. 2022;12(18):3103. DOI:10.3390/nano12183103
  • Patel A, Soni S, Mittal J, et al. Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome. Desalin Water Treat. 2021;220:342–352. DOI:10.5004/dwt.2021.26911
  • Blanco-Flores AL, Colín-Cruz AR, Gutiérrez-Segura E, et al. Efficient removal of crystal violet dye from aqueous solutions by vitreous tuff mineral. Environ Technol. 2014;35(12):1508–1519. DOI:10.1080/09593330.2013.871352
  • Yu Z, Hu C, Dichiara AB, et al. Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials. 2020;10(1):169. DOI:10.3390/nano10010169
  • Wen XJ, Niu CG, Huang DW, et al. Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst. J Catal. 2017;355:73–86. DOI:10.1016/j.jcat.2017.08.028
  • Singh S, Srivastava VC, Lo SL. Surface modification or doping of WO3 for enhancing the photocatalytic degradation of organic pollutant containing wastewaters: a review. Mater Sci Forum. 2016;855:105–126. DOI:10.4028/www.scientific.net/MSF.855.105
  • Tan G, Mishra DD, Kumar A, et al. Controllable synthesis of WO3/Co1-δWO4 composite nanopowders for photocatalytic degradation of methylene blue (MB). J Nanopart Res. 2022;24. DOI:10.1007/s11051-022-05506-3
  • Aamir L. Novel p-type Ag-WO3 nano-composite for low-cost electronics, photocatalysis, and sensing: synthesis, characterization, and application. J Alloys Compd. 2022: 158108. DOI:10.1016/j.jallcom.2020.158108
  • Hannachi E, Khan FA, Slimani Y, et al. Fabrication, characterization, anticancer and antibacterial activities of ZnO nanoparticles doped with Y and Ce elements. J Clust Sci. 2022: 1–2. DOI:10.1007/s10876-022-02348-w
  • Ansari MA, Albetran HM, Alheshibri MH, et al. Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against gram-positive and gram-negative bacteria. Antibiotics. 2020;9(9):572. DOI:10.3390/antibiotics9090572
  • Manikandan A, Yogasundari M, Thanrasu K, et al. Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@ Fe3O4 nanocomposite. Phys E Low Dimens Syst. 2020;124:114291. DOI:10.1016/j.physe.2020.114291
  • Slimani Y, Hannachi E, Ekicibil AH, et al. Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J Alloys Compd. 2019;781:664–673. DOI:10.1016/j.jallcom.2018.12.062
  • Hannachi E, Mahmoud KA, Sayyed MI, et al. Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides. Mater Sci Semicond Process. 2022;145:106629. DOI:10.1016/j.mssp.2022.106629
  • Karthikeyan C, Arunachalam P, Ramachandran K, et al. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J Alloys Compd. 2020;828:154281. DOI:10.1016/j.jallcom.2020.154281
  • Go GH, Shinde PS, Doh CH, et al. PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting. Mater Des. 2016;90:1005–1009. DOI:10.1016/j.matdes.2015.11.042
  • Yao S, Qu F, Wang G, et al. Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. J Alloys Compd. 2017;724:695–702. DOI:10.1016/j.jallcom.2017.07.123
  • Lian C, Xiao X, Chen Z, et al. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016;9:435–441. DOI:10.1007/s12274-015-0924-6
  • Merajin MT, Nasiri M, Abedini E, et al. Performance of WO3 nanoparticles in photocatalytic conversion of greenhouse gases under visible light irradiation. Indian J Chem Technol. 2018;25:208–215.
  • Silveira JV, Moraes EC, Moura JVB, et al. Mo-doped WO3 nanowires for adsorbing methylene blue dye from wastewater. J Mater Sci. 2020;55:6429–6440. DOI:10.1007/s10853-020-04472-2
  • Gnanamuthu SJ, Vijayapriya J, Parasuraman K, et al. Photocatalytic activity of undoped WO3 nano particles prepared by hydrothermal method. Int J Res Anal. 2019;6:934–941.
  • Jamali M, Shariatmadar Tehrani F. Effect of synthesis route on the structural and morphological properties of WO3 nanostructures. Mater Sci Semicond Process. 2020;107:104829. DOI:10.1016/j.mssp.2019.104829
  • Azmat S, Jan T, Ilyas SZ, et al. Solar light triggered photocatalytic performance of WO3 nanostructures; waste water treatment. Mater Res Express. 2018;5:115025. DOI:10.1088/2053-1591/aadf0a
  • Aliasghari H, Arabi AM, Haratizadeh H. A novel approach for solution combustion synthesis of tungsten oxide nanoparticles for photocatalytic and electrochromic applications. Ceram Int. 2020;46:403–414. DOI:10.1016/j.ceramint.2019.08.275
  • Karthik M, Parthibavarman M, Kumaresan A, et al. One-step microwave synthesis of pure and Mn doped WO3 nanoparticles and its structural, optical and electrochemical properties. J Mater Sci Mater Electron. 2017;28:6635–6642. DOI:10.1007/s10854-017-6354-3
  • Zhao L, Xi X, Liu Y, et al. Facile synthesis of WO3 micro/nanostructures by paper-assisted calcination for visible-light-driven photocatalysis. Chem Phys. 2020;528:110515. DOI:10.1016/j.chemphys.2019.110515
  • Ram J, Singh RG, Gupta R, et al. Effect of annealing on the surface morphology, optical and structural properties of nanodimensional tungsten oxide prepared by coprecipitation technique. J Electron Mater. 2019;48:1174–1183. DOI:10.1007/s11664-018-06846-4
  • Chandrika M, Ravindra AV. Tailoring of crystal phase, morphology, and optical properties of ZnO nanostructures by starch-assisted co-precipitation synthesis and annealing. Eur Phys J Plus. 2020;123:1–15. DOI:10.1140/epjp/s13360-019-00073-4
  • Vidhya K, Saravanan M, Bhoopathi G, et al. Structural and optical characterization of pure and starch-capped ZnO quantum dots and their photocatalytic activity. Appl Nanosci. 2014. DOI:10.1007/s13204-014-0312-7
  • Ali HE, Abdel-Aziz MM, Aboraia AM, et al. Control the nanostructured growth of manganese oxide using starch: electrical and optical analysis. Optik (Stuttg). 2020: 165969. DOI:10.1016/j.ijleo.2020.165969
  • Feng Y, Feng N, Wei Y, et al. An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv. 2014;4(16):7933–7943. DOI:10.1039/C3RA46417B
  • Parthibavarman M, Karthik M, Sathishkumar P, et al. Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J Iran Chem Soc. 2018;15:1419–1430. DOI:10.1007/s13738-018-1342-y
  • Tian X, Wen J, Wang S, et al. Starch-assisted synthesis and optical properties of ZnS nanoparticles. Mater Res Bull. 2016. DOI:10.1016/j.materresbull.2016.01.046
  • Antony AJ, Jelastin SM, Joel C, et al. Enhancing the visible light induced photocatalytic properties of WO3 nanoparticles by doping with vanadium. J Phys Chem Solids. 2021;157:110169. DOI:10.1016/j.jpcs.2021.110169
  • Siddiqui SI, Singh PN, Tara N, et al. Arsenic removal from water by starch functionalized maghemite nano- adsorbents : thermodynamics and kinetics investigations. Colloid Interface Sci Commun. 2020;36:100263. DOI:10.1016/j.colcom.2020.100263
  • Sharma P, Kumari S, Ghosh D, et al. Capping agent-induced variation of physicochemical and biological properties of α-Fe2O3 nanoparticles. Mater Chem Phys. 2021;258:123899. DOI:10.1016/j.matchemphys.2020.123899
  • Subramani T, Thimmarayan G, Balraj B, et al. Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: a strong impact of morphology. Inorg Chem Commun. 2022;142:109709. DOI:10.1016/j.inoche.2022.109709
  • Gupta SP, Nishad HH, Chakane SD, et al. Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. Nanoscale Adv. 2020;2:4689–4701. DOI:10.1039/d0na00423e
  • Mehmood F, Iqbal J, Ismail M, et al. Ni doped WO3 nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J Alloys Compd. 2018;746:729–738. DOI:10.1016/j.jallcom.2018.01.409
  • Pang HF, Xiang X, Li ZJ, et al. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys Status Solidi. 2012;209:537–544. DOI:10.1002/pssa.201127456
  • Sánchez-Martíneza D, Gómez-Solísa C, Torres-Martíneza LM. CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO3. Mater Res Bull. 2015;61:165–172. DOI:10.1016/j.materresbull.2014.10.034
  • Lachore WL, Hone FG, Andoshe DM, et al. Copper and nickel co-doping effects on the structural, optical and electrical properties of tungsten trioxide nanoparticles prepared by co-precipitation technique. Mater Res Express. 2022;9:035008. DOI:10.1088/2053-1591/ac5ef2
  • Wojcieszak D, Kaczmarek D, Domaradzki J, et al. Correlation of photocatalysis and photoluminescence effect in relation to the surface properties of TiO2: Tb thin films. Int J Photoenergy. 2013;2013. DOI:10.1155/2013/526140
  • Quyen VT, Kim JT, Park PM, et al. Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3. J Environ Chem Eng. 2021;9:104737. DOI:10.1016/j.jece.2020.104737
  • Wang S, Kershaw SV, Li G, et al. The self-assembly synthesis of tungsten oxide quantum dots with enhanced optical properties. J Mater Chem C. 2015;3(14):3280–3285. DOI:10.1039/C5TC00278H
  • Upadhyay SB, Mishra RK, Sahay PP. Cr-doped WO3 nanosheets: structural, optical and formaldehyde sensing properties. Ceram Int. 2016;42:15301–15310. DOI:10.1016/j.ceramint.2016.06.170
  • Ramkumar S, Rajarajan G. Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films. J Mater Sci Mater Electron. 2016;27:1847–1853. DOI:10.1007/s10854-015-3963-6
  • Bahadur A, Anjum TA, Roosh M, et al. Magnetic, electronic, and optical studies of Gd-doped WO3: a first principle study. Molecules. 2022 Oct 17;27(20):6976. DOI:10.3390/molecules27206976
  • Dhanalakshmi M, Lakshmi Prabavathi S, Saravanakumar K, et al. Iridium nanoparticles anchored WO3 nanocubes as an efficient photocatalyst for removal of refractory contaminants (crystal violet and methylene blue). Chem Phys Lett. 2020;745:137285. DOI:10.1016/j.cplett.2020.137285
  • Adhikari R, Gyawali G, Kim TH, et al. EDTA mediated microwave hydrothermal synthesis of WO3 hierarchical structure and its photoactivity under simulated solar light. J Environ Chem Eng. 2014;2:1365–1370. DOI:10.1016/j.jece.2014.02.019
  • Farjood M, Zanjanchi MA. Template-Free synthesis of mesoporous tungsten oxide nanostructures and its application in photocatalysis and adsorption reactions. ChemistrySelect. 2019;4:3042–3046. DOI:10.1002/slct.201804007
  • Nguyen CT, Pham NL, Nguyen TT, et al. Effect of reaction time on the phase transformation and photocatalytic activity under solar irradiation of tungsten oxide nanocuboids prepared via facile hydrothermal method. Phase Transit. 2021;94:651–666. DOI:10.1080/01411594.2021.1954646
  • Hannachi E, Slimani Y, Nawaz M, et al. Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. J Rare Earths. 2022. DOI:10.1016/j.jre.2022.03.020
  • Hannachi E, Slimani Y, Nawaz M, et al. Synthesis, characterization, and evaluation of the photocatalytic properties of zinc oxide co-doped with lanthanides elements. J Phys Chem Solids. 2022;170:110910. DOI:10.1016/j.jpcs.2022.110910
  • Ajeesha T, Ashwini A, George M, et al. Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Phys B Condens Matter. 2021;606:412660. DOI:10.1016/j.physb.2020.412660
  • Aamir M, Bibi I, Ata S, et al. Micro-emulsion approach for the fabrication of La1− xGdxCr1− yFeyO3: magnetic, dielectric and photocatalytic activity evaluation under visible light irradiation. Results Phys. 2021;23:104023. DOI:10.1016/j.rinp.2021.104023
  • Bibi I, Muneer M, Iqbal M, et al. Effect of doping on dielectric and optical properties of barium hexaferrite: photocatalytic performance under solar light irradiation. Ceram. Int. 2021;47(22):31518–31526. DOI:10.1016/j.ceramint.2021.08.030
  • Mathiarasu RR, Manikandan A, Panneerselvam K, et al. Photocatalytic degradation of reactive anionic dyes RB5, RR198 and RY145 via rare earth element (REE) lanthanum substituted CaTiO3 perovskite catalysts. J Mater Res Technol. 2021;15:5936–5947. DOI:10.1016/j.jmrt.2021.11.047
  • Ata S, Shaheen I, Majid F, et al. Hydrothermal route for the synthesis of manganese ferrite nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye. Z Phys Chem (N F). 2021;235(11):1433–1445. DOI:10.1515/zpch-19-1381

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.