301
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The cationic interstitials induced resistive switching: a case study on Mn-doped SnO2

, , , ORCID Icon, , , & show all
Pages 1180-1186 | Received 08 May 2022, Accepted 22 Dec 2022, Published online: 05 Jan 2023

References

  • Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature. 2020;577:641.
  • Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature. 2008;453:80–83.
  • Qin Y, Bao H, Wang F, et al. Recent progress on memristive convolutional neural networks for edge intelligence. Adv Intell Syst. 2020;2:2000114.
  • Magyari-Kope B, Park SG, Lee HD, et al. First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides. J Mater Sci. 2012;47:7498–7514.
  • Cheng XF, Xia SG, Hou X, et al. Racemic effect on the performance of organic multilevel memory: beyond molecular design. Adv Mater Technol. 2017;2:1700202.
  • Chen Z, Huang W, Zhao W, et al. Ultrafast multilevel switching in Au/YIG/n‐Si RRAM. Adv Electron Mater. 2019;5:1800418.
  • Yang C-S, Shang D-S, Chai Y-S, et al. Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells. Phys Chem Chem Phys. 2017;19:4190–4198.
  • Zhou L, Yang S, Ding G, et al. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy. 2019;58:293–303.
  • Nili H, Vincent A, Prezioso M, et al. Comprehensive compact phenomenological modelling of integrated metal-oxide memristors. IEEE Trans Nanotechnol. 2020;19:344–349.
  • Mohammad B, Jaoude MA, Kumar V, et al. State of the art of metal oxide memristor devices. Nanotechnol Rev. 2016;5:311–329.
  • Gjk A, Ms B, Ys B, et al. Mechanism of analog bipolar resistive switching and work function in Au/Na0.5Bi0.5TiO3/Pt heterostructure thin films. Mater Chem Phys. 2020;257:123765.
  • Zhu L, Zhou J, Guo Z, et al. Synergistic resistive switching mechanism of oxygen vacancies and metal interstitials in Ta2O5. J Phys Chem C. 2016;120:2456.
  • Chen J, Hsin C-L, Huang C-W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013;13:3671.
  • Waser R, Dittmann R, Staikov G, et al. Redox‐based resistive switching memories–nanoionic mechanisms, prospects. Adv Mater. 2009;21:2632.
  • Kamiya K, Yang MY, Magyari-Kpe B, et al. Modeling of resistive random access memory (RRAM) switching mechanisms and memory structures. Woodhead, Cambridge; 2014. p. 262.
  • Xu Z, Guan P, Ji T, et al. Cationic interstitials: an overlooked ionic defect in memristors. Front Chem. 2022;10:944029.
  • Gu T, Tada T, Watanabe S, et al. Conductive path formation in the Ta2O5 atomic switch: first-principles analyses. ACS Nano. 2010;4:6477.
  • Hussain F, Imran M, Rana AM, et al. An insight into the dopant selection for CeO2-based resistive-switching memory system: a DFT and experimental study. Appl Nanosci. 2018;8:839.
  • Talukdar A. Structural and electrical characterization of tin oxide resistive switching [PhD dissertation]. University of Texas, El Paso; 2017.
  • Trapatseli M. Doping controlled resistive switching dynamics in transition metal [PhD dissertation]. University of Southampton, Southampton; 2018.
  • Deuermeier J, Kiazadeh A, Klein A, et al. Multi-level cell properties of a bilayer Cu2O/Al2O3 resistive switching device. Nanomater. 2019;9:19521.
  • Facchetti A, Marks T. Transparent electronics: from synthesis to applications. Wiley, Hoboken; 2010.
  • Huang C-H, Huang J-S, Lai C-C, et al. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl Mater Interfaces. 2013;5:6017–6023.
  • Lin J, Peng Z, Xiang C, et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano. 2013;7:6001–6006.
  • Pan J, Li S, Ou W, et al. The photovoltaic conversion enhancement of NiO/Tm: CeO2/SnO2 transparent pn junction device with dual-functional Tm: CeO2 quantum dots. Chem Eng J. 2020;393:124802.
  • Hao D, Liu D, Shen Y, et al. Air‐stable self‐powered photodetectors based on lead‐free CsBi3I10/SnO2 heterojunction for weak light detection. Adv Funct Mater. 2021;31:2100773.
  • Xu Z, Younis A, Cazorla C, et al. Engineering cationic defects in transparent tin oxide superlattices. Mater Des. 2018;155:71.
  • Xu Z, Guan P, Younis A, et al. Manipulating resistive states in oxide based resistive memories through defective layers design. RSC Adv. 2017;7:56390.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.
  • Bma B, Ns A, Mra A, et al. Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique: thermoelectric and p-type conductivity properties. Solid State Sci. 2009;11:233–239.
  • He H, Xie Z, Li Q, et al. On the possibility of p-type doping of SnO2 with Mg: A first-principles study. Comput Mater Sci. 2015;101:62–65.
  • Mehraj S, Shahnawaze Ansari M, Al-Ghamdi AA, et al. Annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior. Mater Chem Phys. 2016;171:109–118.
  • Shang DS, Wang Q, Chen LD, et al. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys Rev B. 2006;73:24.
  • Kao WHKC. Electrical transport in solids, with particular reference to organic semiconductors. Oxford: Pergamon Press; 1981. p. 660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.