307
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stacking fault energy and creep mechanism of a single-crystal nickel-based superalloy

, , , , &
Pages 1393-1401 | Received 02 Nov 2021, Accepted 18 Jan 2023, Published online: 05 Feb 2023

References

  • Wu QH, Zhang J, Luo YS. Composition and mechanical property of DD6 superalloy revert. Mater Sci Forum. 2014;788:488–492. doi:10.4028/www.scientific.net/MSF.788.488.
  • Kolbe M, Neuking K, Eggeler G. Dislocation reactions and microstructural instability during 1025°C shear creep testing of superalloy single crystals. Mater Sci Eng A. 1997;234:877–879. doi:10.1016/s0921-5093(97)00366-3.
  • Dey SN, Chatterjee P, Sen Gupta SP. Deformation stacking fault probability and dislocation microstructure of cold worked Cu-Sn-5Zn alloys by x-ray diffraction line profile analysis. J Appl Phys. 2006;100:1–6. doi:10.1063/1.2356906.
  • Knowles DM, Chen QZ. Superlattice stacking fault formation and twinning during creep in ((/( single crystal superalloy CMSX-4. Mater Sci Eng A. 2003;340:88–102. doi:10.1016/s0921-5093(02)00172-7.
  • Karnthaler HP, Th. Mühlbacher E, Rentenberger C. The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys. Acta Mater. 1996;44:547–560. doi:10.1016/1359-6454(95)00191-3.
  • Gourdet S, Montheillet F. Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals. Acta Mater. 2002;50:2801–2812. doi:10.1016/s1359-6454(02)00098-8.
  • Zhao YH, Zhu YT, Liao XZ, et al. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater Sci Eng A. 2007;463:22–26. doi:10.1016/j.msea.2006.08.119.
  • Sugui T, Ning T, Huichen Y, et al. Influence of solution temperature on microstructure and creep property of a directional solidified nickel-based superalloy at intermediate temperatures. Mater Sci Eng A. 2014;615:469–480. doi:10.1016/j.msea.2014.07.103.
  • Reed RP, Schramm RE. Relationship between stacking-fault and X-ray measurements of stacking-fault probability and microstrain. J Appl Phys. 1974;45:4705–4711. doi:10.1063/1.1663122.
  • Jian L, Wayman CM. On the mechanism of the shape memory effect associated with ( (fcc) to ϵ (hcp) martensitic transformations in Fe-Mn-Si based alloys. Scr Metall Mater. 1992;27:279–284. doi:10.1016/0956-716X(92)90512-D.
  • Hirschhorn JS. Stacking faults in the refractory metals and alloys – a review. J Less-Common Metals. 1963;5:493–509. doi:10.1016/0022-5088(63)90062-6.
  • Xiong R, Peng H, Si H, et al. Thermodynamic calculation of stacking fault energy of the Fe-Mn-Si-C high manganese steels. Mater Sci Eng A. 2014;598:376–386. doi:10.1016/j.msea.2014.01.046.
  • Yu X-X, Wang C-Y. The effect of alloying elements on the dislocation climbing velocity in Ni: a first-principles study. Acta Mater. 2009;57:5914–5920. doi:10.1016/j.actamat.2009.08.019.
  • He G, Rong Y, Xu Z. Self-energy and interaction energy of stacking fault in FCC metals calculated by embedded-atom method. Sci China (Series E). 2000;43:146–153. doi:10.1007/bf02916884.
  • Rae CMF, Matan N, Reed RC. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750°C and 750 MPa. Mater Sci Eng A. 2001;300:125–134. doi:10.1016/s0921-5093(00)01788-3.
  • Milligan WW, Antolovich SD. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall Trans. 1991;22:2309–2318. doi:10.1007/bf02664997.
  • Jin X, Xu Z, Li L. Critical driving force for martensitic transformation fcc (γ)→hcp (ϵ) in Fe-Mn-Si shape memory alloys, sci. Chin. 1999;42:266–274. doi:10.1007/bf02916772.
  • Ericsson T. On The suzuki effect and spinodal decomposition. Acta Metall. 1966;14:1073–1084. doi:10.1016/0001-6160(66)90195-7.
  • Dinsdale AT. SGTE data for pure elements. Calphad. 1991;15:317–425. doi:10.1016/0364-5916(91)90030-N.
  • Wanderka N, Glatzel U. Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy. Mater Sci Eng A. 1995;203:69–74. doi:10.1016/0921-5093(95)09825-9.
  • Smith TM, Unocic RR, Deutchman H, et al. Creep deformation mechanism mapping in nickel base disk superalloys. Mater High Temp. 2016;33:372–383. doi:10.1080/09603409.2016.1180858.
  • Miedema AR, de Châtel PF, de Boer FR. Cohesion in alloys – fundamentals of a semi-empirical model. Physic B + C. 1980;100:1–28. doi:10.1016/0378-4363(80)90054-6.
  • Chou K-C, Li W-C, Li F, et al. Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad. 1996;20:395–406. doi:10.1016/s0364-5916(97)00002-3.
  • Kaufman L, Nesor H. Calculation of the Ni-Al-W, Ni-Al-Hf and Ni-Cr-Hf systems. Can Metall Q. 1975;14:221–232. doi:10.1179/000844375795050157.
  • Santhy K, Hari Kumar KC. Thermodynamic assessment of Mo-Ni-Ti ternary system by coupling first-principle calculations with CALPHAD approach. Intermetallics. 2010;18:1713–1721. doi:10.1016/j.intermet.2010.05.008.
  • Tian S, Zhu X, Wu J, et al. Influence of temperature on stacking fault energy and creep mechanism of a single crystal nickel-based superalloy. J Mater Sci Technol. 2016;32:790–798. doi:10.1016/j.jmst.2016.01.020.
  • Kamil M, Alexander M, Nils R, et al. On the thermodynamics and kinetics of TCP phase precipitation in Re- and Ru-containing Ni-base superalloys. Adv Eng Mater. 2015;17:1127–1133. doi:10.1002/adem.201500173.
  • Viswanathan GB, Sarosi PM, Henry MR, et al. Investigation of creep deformation mechanisms at intermediate temperatures in rené 88 DT. Acta Mate. 2005;53:3041–3057. doi:10.1016/j.actamat.2005.03.017.
  • Decamps B, Raujol S, Coujou A, et al. On the shearing mechanism of (( precipitates by a single (a/6) 112 Shockley partial in Ni-based superalloys. Philos Mag A. 2004;84:91–107. doi:10.1080/14786430310001621472.
  • Rong TS, Jones IP, Smallman RE. Dislocation mechanisms in creep of Ni3Al at intermediate temperature. Acta Metall Mater. 1995;43:1385–1393. doi:10.1016/0956-7151(94)00381-q.
  • Kear BH, Wilsdorf HGF. Dislocation configurations in plantically deformed polycrystalline Cu3Au alloys. Trans Am Inst Min Eng. 1962;224:382–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.