103
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Loading-direction dependence of interaction types between different twin variants in AZ31 alloy

, , , &
Pages 1490-1500 | Received 08 Apr 2022, Accepted 22 Jan 2023, Published online: 08 Feb 2023

References

  • Liu XY, Mao PL, Wu XX, et al. Dynamic compression behaviour and constitutive description of fine-grain Mg–4Zn–1Y alloy. Mater Sci Tech. 2022;38:1605–1616.
  • Bagheri B, Abbasi M, Abdollahzadeh A, et al. A comparative study between friction stir processing and friction stir vibration. Int J Miner Metall Mater. 2020;27:1133–1147.
  • Abbasi M, Bagheri B, Sharifi F. Simulation and experimental study of dynamic recrystallization process during friction stir vibrationwelding of magnesium alloys. Trans Nonferrous Met Soc China. 2021;31:2626–2650.
  • Bagheri B, Abbasi M. Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics. Adv Manuf. 2020;8:8–96.
  • Bai SW, Wang F, Du XD, et al. Effect of alternating magnetic fields on hot tearing susceptibility of Mg–4Zn–1.5Ca alloy. Mater Sci Tech. 2023;39:50–61.
  • Abdollahzadeh A, Bagheri B, Abbasi M, et al. Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing. Surf Topogr: Metrol Prop. 2021;9:035038.
  • Bagheri B, Abbasi M, Abdollahzadeh A, et al. Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP. Trans Nonferrous Met Soc China. 2020;30:905–916.
  • Koushki A, Heydarinia H, Emamy M, et al. Tailoring the tensile properties of AZ91 magnesium alloy via grain refinement. Mater Sci Tech. 2022;38:1434–1438.
  • Zhang H, Hao HL, Fu GY, et al. Microstructure and mechanical property of Hot-rolled Mg–2Ag alloy prepared with multi-pass rolling. Acta Metall Sin. (Engl. Lett.). 2022. doi:10.1007/s40195-022-01462-y
  • Ulacia I, Dudamell NV, Gálvez F, et al. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater. 2010;58:2988–2998.
  • Liu XQ, Qiao XG, Pei RS, et al. Role of extrusion rate on the microstructure and tensile properties evolution of ultrahigh-strength low-alloy Mg-1.0Al-1.0Ca-0.4Mn (wt-%) alloy. J Magnes Alloy. 2021. doi:10.1016/j.jma.2021.05.010
  • Lee JH, Lee T, Song SW, et al. Enhancing yield strength by suppressing detwinning in a rolled Mg–3Al–1Zn alloy with {101¯2} twins. Mater Sci Eng A. 2014;619:328–333.
  • Qian BY, Wu RZ, Sun JF, et al. Evolutions of microstructure and mechanical properties in Mg-5Li-1Zn-0.5Ag-0.5Zr-xGd alloy. Acta Metall Sin (Engl Lett). 2023. doi:10.1007/s40195-022-01509-0
  • Qiu W, Xie W, Li QF, et al. Effect of vanadium nitride (VN) particles on microstructure and mechanical properties of extruded AZ31 Mg alloy. Acta Metall Sin (Engl Lett). 2022. doi:10.1007/s40195-022-01476-6
  • Zhang H, Li YX, Liu YX, et al. The effect of basal <a > dislocation on {112¯1} twin boundary evolution in a Mg-Gd-Y-Zr alloy. J Mater Sci Technol. 2021;81:212–218.
  • Zhou MH, Xu YH, Liu Y, et al. Microstructures and mechanical properties of Mg-15Gd-1Zn-0.4Zr alloys treated by ultrasonic surface rolling process. Mater Sci Eng A. 2021;828:141881–141897.
  • Duan M, Luo Y, Liu Y. Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: grain and texture gradient. J Alloys Compd. 2020;823:153691–153702.
  • Xi GQ, Zhang J, Luo Y, et al. Study on the twinning/De-twining behavior of diferent types of twin–twin interaction via experiments and molecular dynamics simulation. Met Mater Int. 2022. doi:10.1007/s12540-022-01275-9
  • Xi GQ, Jin JD, Ma YL, et al. Interaction between {101¯2} and {303¯4} twin in magnesium alloy. J Mater Sci. 2022;57:15109–15120.
  • Pang H, Li QA, Chen XY, et al. Hot deformation behavior and microstructure evolution of Mg-Gd-Y(-Sm)-Zr alloys. J. Alloy. Compd. 2022. doi:10.1016/j.jallcom.2022.165937
  • Wang FL, Gu YJ, McCabe RJ, et al. 〈c+a〉 Dislocations in {101¯2} twins in Mg: a kinematic and energetic requirement. Acta Mater. 2020;19:13–24.
  • Liu XD, Chen J, Liu XL, et al. Effect of twin boundary-dislocation and twin boundary-solute atom interaction on detwinning of Mg-2Gd-2Y-0.3Zr alloy. J. Alloys Compd. 2019;770:483–489.
  • Della Ventur NM, Della Ventur S, Casari D, et al. Maeder X. {101¯2} twinning mechanism during in situ micro-tensile loading of pure Mg: role of basal slip and twin-twin interactions. Mater. Des. 2021;97:109206–109275.
  • Xi GQ, Zhang J, Wu JQ, et al. Observations on the intersection between {101¯1} And {101¯2} twin in deformed magnesium alloy. Kovove Mater. 2021;59:231–236.
  • Barrett C D, El Kadiri H. Impact of deformation faceting on {101¯2}, {101¯1}, and {101¯3} embryonic twin nucleation in hexagonal closed-packed metals. Acta Mater. 2014;70:137–161.
  • Kumar MA, Gong M, Beyerlein IJ, et al. Role of local stresses on co-zone twin-twin junction formation in HCP magnesium. Acta Mater. 2019;168:353–361.
  • Gong MY, Xu S, Jiang YY, et al. Structural characteristics of {101¯2} non-cozone twin-twin interactions in magnesium. Acta Mater. 2018;159:65–76.
  • Yu Q, Wang J, Jiang Y, et al. Twin–twin interactions in magnesium. Acta Mater. 2014;77:28–42.
  • Yu Q, Wang J, Jiang YY, et al. Co-zone {101¯2} twin interaction in magnesium single crystal. Mater. Res. Letter. 2013;2:82–88.
  • Dang K, Tomé N, Capolungo L. The {101¯2} non-cozone twin-twin interactions in Mg: A stability and mobility study using 3-D atomistic simulations. Scr. Mater. 2021;200:113913–113918.
  • Guo XQ, Ma C, Zhao LY, et al. Effect of pre-deformation on the activation stress of {101¯2} twinning in Mg–3Al–1Zn alloy. Mater Sci Eng A. 2021;800:140384–140397.
  • Wang QH, Jiang B, Zhao J, et al. Pre-strain effect on twinning and de-twinning behaviors of Mg-3Li alloy traced by quasi-in-situ EBSD. Mater Sci Eng A. 2020;798:140069–140079.
  • Kamaya M. Assessment of local deformation using EBSD: quantification of accuracy of measurement and definition of local gradient. Ultramicroscopy. 2011;111:1189–1199.
  • Zhang J, Xi GQ, Wan X, et al. The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy. Acta Mater. 2017;133:208–216.
  • Che B, Lu LW, Zang JL, et al. Investigation on microstructure and mechanical properties of hot-rolled AZ31 Mg alloy with various cryogenic treatments. J Mater Res Technol. 2022;19:4557–4570.
  • Hou DW, Liu TM, Shi DF, et al. Study of twinning behaviors of rolled AZ31 magnesium alloy by interrupted in situ compressive tests. Mater Sci Eng A. 2016;653:108–114.
  • El Kadiri H, Kapil J, Oppedal AL, et al. The effect of twin–twin interactions on the nucleation and propagation of {101¯2} twinning in magnesium. Acta Mater. 2013;61:3549–3563.
  • Pan XH, Wang LF, Lu PB, et al. Unveiling the planar deformation mechanisms for improved formability in pre-twinned AZ31 Mg alloy sheet at warm temperature. J. Magnes. Alloy. 2022. doi:10.1016/j.jma.2022.11.010.
  • Gui YW, Li QA, Xue YB, et al. Twin-twin geometric structure effect on the twinning behavior of an Mg-4Y-3Nd-2Sm-0.5Zr alloy traced by quasi-in-situ EBSD. J. Magnes. Alloy. 2021. doi:10.1016/j.jma.2021.08.004
  • Gong W, Zheng RX, Harjo S, et al. In-situ observation of twinning and detwinning in AZ31 alloy. J Magnes Alloy. 2022. doi:10.1016/j.jma.2022.02.002
  • Russell WD, Bratton NR, Paudel Y, et al. In situ characterization of the effect of twin-microstructure interactions on {101¯2} tension and {101¯1} contraction twin nucleation, growth and damage in magnesium. Metals (Basel). 2020;10:1403–1425.
  • Zhang QH, Li JG, Jiang K, et al. Gradient structure induced simultaneous enhancement of strength and ductility in AZ31 Mg alloy with twin-twin interactions. J. Magnes. Alloy. 2021. doi:10.1016/j.jma.2021.10.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.