454
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Precipitation behaviour and strengthening mechanisms of V-bearing 1800 MPa grade hot-stamping steel

, , , , , , , & show all
Pages 1592-1607 | Received 23 Aug 2022, Accepted 29 Jan 2023, Published online: 19 Feb 2023

References

  • Joost WJ. Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM. 2012;64(9):1032–1038.
  • Lu Q, Lai Q, Chai Z, et al. Revolutionizing car body manufacturing using a unified steel metallurgy concept. Sci Adv 2021;7(49):eabk0176.
  • Wang P, Ryberg M, Yang Y, et al. Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nat Commun 2021;12(1):2066.
  • Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels. Prog Mater Sci 2018;94:174–242.
  • He BB, Hu B, Yen HW, et al. High dislocation density induced large ductility in deformed and partitioned steels. Science. 2017;357(6355):1029–1032.
  • Ding R, Yao Y, Sun B, et al. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels. Sci Adv 2020;6(13):eaay1430.
  • Bouaziz O, Zurob H, Huang M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res Int 2013;84(10):937–947.
  • Taylor T, Clough A. Critical review of automotive hot-stamped sheet steel from an industrial perspective. Mater Sci Technol 2018;34(7):809–861.
  • Karbasian H, Tekkaya AE. A review on hot stamping. J Mater Process Technol 2010;210(15):2103–2118.
  • Billur E. Hot stamping of ultra high-strength steels: from a technological and business perspective. Cham: Springer International Publishing; 2019.
  • Wei X, Chai Z, Lu Q, et al. Cr-alloyed novel press-hardening steel with superior combination of strength and ductility. Mater Sci Eng, A. 2021;819:141461.
  • Liang J, Zhao Z, Sun B, et al. A novel ultra-strong hot stamping steel treated by quenching and partitioning process. Mater Sci Technol 2018;34(18):2241–2249.
  • Liu H, Lu X, Jin X, et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process. Scr Mater 2011;64(8):749–752.
  • Cai HL, Chen P, Oh JK, et al. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing. Scr Mater 2020;178:77–81.
  • Mu YH, Wang BY, Zhou J, et al. Influences of hot stamping parameters on mechanical properties and microstructure of 30MnB5 and 22MnB5 quenched in flat die. J Cent South Univ 2018;25(4):736–746.
  • Taylor T, Fourlaris G, Evans P, et al. New generation ultrahigh strength boron steel for automotive hot stamping technologies. Mater Sci Technol 2014;30(7):818–826.
  • Zhou J, Wang BY, Huang MD, et al. Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips. Int J Miner Metall Mater 2014;21(6):544–555.
  • Liang J, Lu H, Zhang L, et al. A 2000MPa grade Nb bearing hot stamping steel with ultra-high yield strength. Mater Sci Eng, A. 2021;801:140419.
  • Wu H, Ju B, Tang D, et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800MPa ultrahigh strength steel. Mater Sci Eng, A. 2015;622:61–66.
  • Yoo J, Jo MC, Jo MC, et al. Effects of Ti alloying on resistance to hydrogen embrittlement in (Nb + Mo)-alloyed ultra-high-strength hot-stamping steels. Mater Sci Eng, A. 2020;791:139763.
  • Yoo J, Jo MC, Jo MC, et al. Effects of solid solution and grain-boundary segregation of Mo on hydrogen embrittlement in 32MnB5 hot-stamping steels. Acta Mater 2021;207:116661.
  • Zhang S, Huang Y, Sun B, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels. Mater Sci Eng, A. 2015;626:136–143.
  • Jui-Fan TU, Yang KC, Chiang LJ, et al. The effect of niobium and molybdenum co-addition on bending property of hot stamping steels. China Steel Technol Rep. 2016;29:1–7.
  • Cho L, Seo EJ, Sulistiyo DH, et al. Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel. Mater Sci Eng, A. 2018;735:448–455.
  • Chen W, Gao P, Wang S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel. Mater Sci Eng, A. 2020;797:140115.
  • Chen WJ, Gao PF, Wang S, et al. Effect of vanadium on hydrogen embrittlement susceptibility of high-strength hot-stamped steel. J Iron Steel Res Int. 2021;28(2):1964–1977.
  • Yoo J, Jo MC, Bian J, et al. Effects of Nb or (Nb + Mo) alloying on charpy impact, bending, and delayed fracture properties in 1.9-GPa-grade press hardening steels. Mater Charact 2021;176:111133.
  • Verhoeven JD. A review of microsegregation induced banding phenomena in steels. J Mater Eng Perform 2000;9(3):286–296.
  • Offerman SE, van Dijk NH, Rekveldt MT, et al. Ferrite/pearlite band formation in hot rolled medium carbon steel. Mater Sci Technol 2002;18(3):297–303.
  • Johnson DH, Edwards MR, Chard-Tuckey P. Microstructural effects on the magnitude of lüders strains in a low alloy steel. Mater Sci Eng, A. 2015;625:36–45.
  • Li YJ, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scr Mater 2015;96:13–16.
  • Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater 2011;59(14):5845–5858.
  • Järvinen H, Isakov M, Nyyssönen T, et al. The effect of initial microstructure on the final properties of press hardened 22MnB5 steels. Mater Sci Eng, A. 2016;676:109–120.
  • Luo H, Wang X, Liu Z, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel. J Mater Sci Technol 2020;51:130–136.
  • Chen Y, Ping D, Wang Y, et al. An atomic mechanism for the formation of nanotwins in high carbon martensite. J Alloys Compd 2018;767:68–72.
  • HajyAkbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel. Acta Mater 2016;104:72–83.
  • Speich GR, Leslie WC. Tempering of steel. Metall Trans. 1972;3(5):1043–1054.
  • Yong QL. Secondary phase in the steel. Beijing: Metallurgical Industry Press; 2006.
  • Wang J, Weyland M, Bikmukhametov I, et al. Transformation from cluster to nano-precipitate in microalloyed ferritic steel. Scr Mater 2019;160:53–57.
  • Choi WS, Lee J, De Cooman BC. Internal-friction analysis of dislocation–interstitial carbon interactions in press-hardened 22MnB5 steel. Mater Sci Eng, A. 2015;639:439–447.
  • Pang JC, Yi HL, Lu Q, et al. Effect of TiN-particles on fracture of press-hardened steel sheets and components. JOM. 2019;71(4):1329–1337.
  • NoHrer M, Zamberger S, Leitner H. Strain-induced precipitation behavior of a Nb–Ti–V steel in the austenite phase field. Steel Res Int 2013;84(9):827–836.
  • Shi G, Zhao H, Zhang S, et al. Microstructural characteristics and impact fracture behaviors of low-carbon vanadium-microalloyed steel with different nitrogen contents. Mater Sci Eng, A. 2020;769:138501.
  • Ioannidou C, Arechabaleta Z, Navarro-López A, et al. Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels. Acta Mater 2019;181:10–24.
  • Kim B, Boucard E, Sourmail T, et al. The influence of silicon in tempered martensite: understanding the microstructure–properties relationship in 0.5–0.6wt.% C steels. Acta Mater. 2014;68:169–178.
  • Jo KR, Seo EJ, Hand Sulistiyo D, et al. On the plasticity mechanisms of lath martensitic steel. Mater Sci Eng, A. 2017;704:252–261.
  • Gao G, Gao B, Gui X, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06–0.42 wt%C). Mater Sci Eng, A. 2019;753:1–10.
  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc London Sect B 1951;64(9):747–753.
  • Wang Y, Sun J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility. Acta Mater. 2018;158:247–256.
  • Ghosh G, Olson GB. The isotropic shear modulus of multicomponent Fe-base solid solutions. Acta Mater. 2002;50(10):2655–2675.
  • Williamson GK, Smallman REIII. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag. 1956;1(1):34–46.
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22–31.
  • Shamsujjoha M. Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels. Mater Sci Eng A. 2020;776:139039.
  • Liu S, Long M, Zhang S, et al. Study on the prediction of tensile strength and phase transition for ultra-high strength hot stamping steel. J Maters Res Technol 2020;9(6):14244–14253.
  • Naderi M, Ketabchi M, Abbasi M, et al. Analysis of microstructure and mechanical properties of different hot stamped B-bearing steels. Steel Res Int. 2010;81(3):216–223.
  • Taylor T, Fourlaris G, Clough A. Effect of carbon and microalloy additions on hot-stamped boron steel. Mater Sci Technol. 2017;33(16):1964–1977.
  • Kittel C. Introduction to solid state physics. 8th ed. Hoboken: John Wiley & Sons; 2004.
  • Ranjan R, Singh SB. Martensite transformation during continuous cooling: analysis of dilatation data. Metall MatersTrans A. 2018;49(10):4474–4483.
  • Liu X, Zhong F, Zhang JX, et al. Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study. Phys Rev B. 1995;52(14):9970–9978.
  • Geng X, Cheng Z, Wang S, et al. A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design. J Mater Sci. 2022;57:10755–10768.
  • Sun H, Wang Y, Wang Z, et al. Twinned substructure in lath martensite of water quenched Fe-0.2%C and Fe-0.8%C steels. J Mater Sci Technol. 2020;49:126–132.
  • Sun J, Jiang T, Wang Y, et al. Effect of grain refinement on high-carbon martensite transformation and its mechanical properties. Mater Sci Eng, A. 2018;726:342–349.
  • Sun JJ, Liu YN, Zhu YT, et al. Super-strong dislocation-structured high-carbon martensite steel. Sci Rep. 2017;7(1):6596.
  • Yang G, Sun X, Li Z, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel. Mater Des. 2013;50:102–107.
  • Liu G, Zhang GJ, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater. 2013;12(4):344–350.
  • Lin YT, Yi HL, Chang ZY, et al. Role of vanadium carbide in hydrogen embrittlement of press-hardened steels: strategy from 1500 to 2000MPa. Front Mater 2021;7:611390.
  • Yuan WJ, Zhang ZL, Su YJ, et al. Influence of specimen thickness with rectangular cross-section on the tensile properties of structural steels. Mater Sci Eng, A. 2012;532:601–605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.