263
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical performance of one-pot hydrothermal-derived bismuth oxide/commercial activated carbon/graphite composite

ORCID Icon, , &
Pages 1802-1815 | Received 30 Sep 2022, Accepted 19 Feb 2023, Published online: 09 Mar 2023

References

  • Ma G, Yang W, Xu C, et al. Nitrogen-Doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode. Electrochim Acta. 2022;428:140898.
  • Wang J, Wang Z, Ni J, et al. Electrospun materials for batteries moving beyond lithium-ion technologies. Electrochem Energy Rev. 2022;5(2):211–241.
  • Sun L, Liu Y, Shao R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials. 2022;46:482–502.
  • Liu Y, Li W, Xia Y. Recent progress in polyanionic anode materials for Li (Na)-ion batteries. Electrochem Energy Rev. 2021;4(3):447–472.
  • Demir E, Soytas HS, Demir-Cakan R. Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries. Solid State Ionics. 2019;342:115066.
  • Wang SX, Jin CC, Qian WJ. Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Compd. 2014;615:12–17.
  • Li Y, Trujillo MA, Fu E, et al. Bismuth oxide: a new lithium-ion battery anode. J Mater Chem A. 2013;1(39):12123–12127.
  • Hong W, Ge P, Jiang Y, et al. Yolk-shell-structured Bismuth@N-Doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interf. 2019;11(11):10829–10840.
  • Bradley B, Singleton M, Po ALW. Bismuth toxicity – a reassessment. J Clin Pharm Ther. 1989;14(6):423–441.
  • Dai R, Wang Y, Da P, et al. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale. 2014;6(21):13236–13241.
  • Huang ZD, Lu H, Qian K, et al. Interfacial engineering enables Bi@C-TiOx microspheres as superpower and long life anode for lithium-ion batteries. Nano Energy. 2018;51:137–145.
  • Astuti Y, Listyani BM, Suyati L, et al. Bismuth oxide prepared by sol-gel method: variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indones J Chem. 2021;21(1):108–117.
  • Kim MK, Yu SH, Jin A, et al. Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chem Commun. 2016;52(79):11775–11778.
  • Wang J, Liu J, Wang B, et al. Fabrication of α-Bi2O3 microrods by solvothermal method and their photocatalytic performance. Chem Lett. 2014;43(4):547–549.
  • Astuti Y, Aprialdi F, Arnelli, et al. Synthesis of activated carbon/bismuth oxide composite and its characterization for battery electrode. IOP Conf Ser: Mater Sci Eng. 2019;509(1):012153.
  • Wan J, Chen Q, Li W, et al. Boosting pseudocapacity by assembling few-layer WS2 into mesoporous nanofibers towards high-performance anode. Electrochim Acta. 2020;345:136238.
  • Chai W, Yin W, Wang K, et al. Carbon-coated bismuth nanospheres derived from Bi-BTC as a promising anode material for lithium storage. Electrochim Acta. 2019;325:134927.
  • Destyorini F, Suhandi A, Subhan A, et al. Pengaruh Suhu Karbonisasi Terhadap Struktur Dan Konduktivitas Listrik Arang Serabut Kelapa [The effect of carbonization temperature on the structure and electrical conductivity of coconut fiber charcoal]. Jurnal Fisika Himpunan Fisika Indonesia. 2010;10(2):122–132.
  • Jamilatun S, Setyawan M. Pembuatan Arang Aktif dari Tempurung Kelapa dan Aplikasinya untuk Penjernihan Asap Cair [Fabrication of activated charcoal from coconut shell and its application for liquid smoke purification]. Spektrum Industri. 2014;12(1):73.
  • Zhao X, Zhang Y, Wang Y, et al. Battery-type electrode materials for sodium-ion capacitors. Batteries & Supercaps. 2019;2(11):899–917.
  • Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater. 2014;24(17):2489–2499.
  • Chen S, Kuang Q, Fan HJ. Dual-carbon batteries: materials and mechanism. Small. 2020;16(40):1–13.
  • Taer E, Taslim R, Putri AW, et al. Activated carbon electrode made from coconut husk waste for supercapacitor application. Int J Electrochem Sci. 2018;13(12):12072–12084. 2020
  • Natarajan S, Aravindan V. An urgent call to spent LIB recycling: whys and wherefores for graphite recovery. Adv Energy Mater. 2020;10(37):2002238.
  • Junaidi M, Susanti D. Pengaruh variasi waktu ultrasonikasi dan waktu tahan hydrothermal terhadap struktur dan konduktivitas listrik material graphene [The effect of variations in ultrasonication time and hydrothermal resistance time on the structure and electrical conductivity of graphene material]. Jurnal Teknik ITS. 2014;3(1):F13–F18.
  • Kim T, Jo C, Lim WG, et al. Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon N Y. 2016;104:106–111.
  • Cheng H, Shapter JG, Li Y, et al. Recent progress of advanced anode materials of lithium-ion batteries. J Energy Chem. 2021;57:451–468.
  • Wang R, Li X, Nie Z, et al. Metal/metal oxide nanoparticles-composited porous carbon for high-performance supercapacitors. J Energy Storage. 2021 April;38:102479.
  • Huang Y, Peng J, Luo J, et al. Spherical Gr/Si/GO/C composite as high-performance anode material for lithium-ion batteries. Energy Fuels. 2020;34(6):7639–7647.
  • Ouyang Y, Chen Y, Peng J, et al. Nickel sulfide/activated carbon nanotubes nanocomposites as advanced electrode of high-performance aqueous asymmetric supercapacitors. J Alloys Compd. 2021;885:160979.
  • Byrappa K, Yoshimura M. Hydrothermal technology – principles and applications, handbook of hydrothermal technology. New York (NY: William Andrew Publishing; 2001.
  • Mokhtar SM, Ahmad MK, Soon CF, et al. Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Optik (Stuttg). 2018;154:510–515.
  • Liu H, Luo SH, Yan SX, et al. High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites Part B: Engineering. 2019;164:576–582.
  • Wu C, Shen L, Huang Q, et al. Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater Lett. 2011;65(7):1134–1136.
  • Astuti Y, Widiyandari H, Zaqia FA, et al. Physicochemical characteristics and electrical conductivity of bismuth oxide/activated carbon composite. IOP Conf Ser: Mater Sci Eng. 2021;1053(1):012014.
  • Deng Z, Liu T, Chen T, et al. Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium Ion batteries. ACS Appl Mater Interf. 2017;9(14):12469–12477.
  • Das T R, Patra S, Madhuri R, et al. Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J Colloid Interface Sci. 2018;509:82–93.
  • Bandyopadhyay S, Dutta A. Thermal, optical and dielectric properties of phase stabilized δ-Dy-Bi2O3 ionic conductors. J Phys Chem Solids. 2017;102:12–20.
  • Astuti Y, Elesta PP, Widodo DS, et al. Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: characterization of physicochemical properties and photocatalytic activity. Bull Chem React Eng Catal. 2020;15(1):104–111.
  • Zhang L, Tu LY, Liang Y, et al. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018;8(74):42280–42291.
  • Facile synthesis of monodisperse Bi2O3 nanoparticles. Materials Chemistry and Physics. 2006;99(1):174–180.
  • Shokuhfar A, Nasir K, Esmaeilirad A, et al. Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. Am J Eng Res (AJER). 2014;03:162–165.
  • Astuti Y, Fauziyah A, Nurhayati S, et al. Synthesis of α-bismuth oxide using solution combustion method and its photocatalytic properties. IOP Conf Ser: Mater Sci Eng. 2016;107(1):012006.
  • Jiang F, Yang M, Qi GP, et al. Heat transfer and antiscaling performance of a Na2SO4 circulating fluidized bed evaporator. Appl Therm Eng. 2019;55:123–134.
  • Yasuda M, Fukumoto K, Ogata Y, et al. Corrosion behavior of Ni and Ni-based alloys in concentrated NaOH solutions at high temperatures. J Electrochem Soc. 1988;35(12):2982–2987.
  • Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 2nd ed. Elsevier; 2012.
  • Hammad AH, Marzouk MA, ElBatal HA. The effects of Bi2O3 on optical, FTIR and thermal properties of SrO-B2O3 glasses. Silicon. 2016;8(1):123–131.
  • Alshuiael SM, Al-Ghouti MA. Multivariate analysis for FTIR in understanding treatment of used cooking oil using activated carbon prepared from olive stone. Plos one. 2020;15(5):e0232997.
  • Bartonickova E, Cihlar J, Castkova K. Microwave-assisted synthesis of bismuth oxide. Process Appl Ceram. 2007;1(1–2):29–33.
  • Rezaei A, Kamali B, Kamali AR. Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures. Measurement: J Int Measure Confed. 2020;150:107087.
  • Hidayah NMS, Liu WW, Lai CW, et al. Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization. AIP Conf Proc. 2017;1892(1):150002.
  • Bledzki AK, Mamun AA, Volk J. Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol. 2010;70(5):840–846.
  • Sing KS, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). In Pure Appl. Chem. 1985;57(4).
  • Sun S, Liang F, Tang L, et al. Microstructural investigation of gas shale in Longmaxi formation, Lower Silurian, NE Sichuan Basin, China. Energy Explor Exploit. 2017;35(4):406–429.
  • Subhan A. Fabrikasi dan Karakterisasi Li4Ti5O12 untuk Bahan Anoda Baterai Lithium Keramik [Fabrication and Characterization of Li4Ti5O12 for Lithium Ceramic Battery Anode Material]. Universitas Indonesia. 2011.
  • Lu C, Pan L, Zhu B. Study the static adsorption/desorption of formaldehyde on activated carbon. Intern Forum Energy, Environ Sci Mater. 2015: 943–947.
  • Cui J, Cheng F, Lin J, et al. High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technol. 2017;311:1–8.
  • Wu ZS, Zhou G, Yin LC, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energi. 2012;1(1):107–131.
  • Peng J, Zhang W, Chen L, et al. A versatile route to metal oxide nanoparticles impregnated in carbon matrix for electrochemical energy storage. Chem Eng J. 2021;404:126461.
  • Shrivastav V, Sundriyal S, Tiwari UK, et al. Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode. Energi. 2021;235:121351.
  • Vargheese S, Pattappan D, Kavya KV, et al. Heteroatom-doped mesoporous carbon prepared from a covalent organic framework/α-MnO2 composite for high-performance supercapacitor. Carbon Lett. 2021: 1–8.
  • Saputry AP, Lestariningsih T, Astuti Y. Pengaruh Rasio LiB0B:Ti02 dari Lembaran Polimer Elektrolit sebagai Pemisah terhadap Kinerja Elektrokimia Baterai Lithium-Ion Berbasis LTO [The effect of LiBOB:TiO2 ratio of electrolyte polymer sheet as separator on electrochemical performance of LTO-based lithium-ion batteries]. Jurnal Kimia Sains dan Aplikasi. 2019;22(4):136–142.
  • Zhong Y, Li B, Li S, et al. Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-micro Letters. 2018;10(4):1–14.
  • Li Y, Wang F, Liang J, et al. Preparation of disordered carbon from rice husks for lithium-ion batteries. New J Chem. 2016;40(1):325–329.
  • Martinez de la Hoz JM, Soto FA, Balbuena PB. Effect of the electrolyte composition on Sei reactions at Si anodes of Li-ion batteries. J Phys Chem C. 2015;119(13):060–7068.
  • Prasath A, Athika M, Duraisamy E, et al. Carbon quantum dot-anchored bismuth oxide composites as potential electrode for lithium-ion battery and supercapacitor applications. ACS Omega. 2019;4(3):4943–4954.
  • Kosasih DP. Pengaruh Variasi Larutan Elektrolite Pada Accumulator Terhadap Arus Dan Tegangan [The effect of electrolite solution variations in the accumulator on current and voltage]. MESA (Teknik Mesin, Teknik Elektro, Teknik Sipil, Arsitektur). 2018;2(2):33–45.
  • Yu X, Zhang K, Tian N, et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Mater Lett. 2015;142:193–196.
  • Wigayati EM, Purawiardi I, Sabrina Q. Karakteristik Morfologi Permukaan Pada Polimer PVdF-LiBOB-ZrO2 dan Potensinya untuk Elektrolit Baterai Litium [Surface morphological characteristics of PVdF-LiBOB-ZrO2 polymer and its potential for lithium battery electrolytes]. Jurnal Kimia dan Kemasan. 2018;40(1):1.
  • Linden D, Reddy TB. Linden’s handbook of batteries. Fourth ed. McGraw-Hill Education; 2002.
  • Widiyandari H, Ardiansah R, Wijareni AS, et al. Synthesis of lithium nickel manganese cobalt as cathode material for Li-ion battery using difference precipitant agent by coprecipitation method. AIP Conf Proc. 2020;2217(1):030023. 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.