245
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wire-arc additive manufactured Al–Cu alloy: microstructure, mechanical properties and their anisotropy

, ORCID Icon, , , , , & show all
Pages 2124-2134 | Received 15 Dec 2022, Accepted 19 Mar 2023, Published online: 29 Mar 2023

References

  • Zhou Z, Chen J, Wen F, et al. Optimization of heat treatment for an Al–Mg–Sc–Mn–Zr alloy with ultrafine grains manufactured by laser powder bed fusion. Mater Charact. 2022;189:111977.
  • Ding D, Pan Z, Cuiuri D. A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol. 2014;73(1-4):173–183.
  • Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci. 2011;50(12):3315–3322.
  • Liu Y, Liu ZZ, Zhou GS, et al. Microstructures and properties of Al-Mg alloys manufactured by WAAM-CMT. Materials. 2022;15(15):5460.
  • Ding D, Pan Z, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81(1-4):465–481.
  • Josten A, Höfemann M. Arc-welding based additive manufacturing for body reinforcement in automotive engineering. Weld World. 2020;64(8):1449–1458.
  • King D, Tansey T. Rapid tooling: selective laser sintering injection tooling. J Mater Process Technol. 2003;132(1-3):42.
  • Levy GN, Schinde R, Kruth JP. Rapid manufacturing and rapid tooling with layer manufacturing technologies, state of the art and future perspectives. CIRP Ann Manuf Technol. 2003;52(2):589–609.
  • Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol. 2018;34(8):895–916.
  • Immarigeon JP, Holt RT, Koul AK. Lightweight materials for aircraft applications. Mater Charact. 1995;35(1):41–67.
  • Hu Y, Sun D, Luo B, et al. Recent progress and future trends of aluminum batteries. Energy Technol. 2019;7(1):86–106.
  • Wu Y. Application of aluminum alloy in aircraft. J Phys Conf Ser. 2022;2228(1):12024.
  • Hoefer K, Haelsig A, Mayr P. Arc-based additive manufacturing of steel components-comparison of wire- and powder-based variants. Weld World. 2018;62(2):243–247.
  • Chen J, Deng Y, Guo X. Revisit the stress-orienting effect of θ’ in Al-Cu single crystal during stress aging. Mater Charact. 2018;135:270–277.
  • Chen J, Liu C, Li Q, et al. Stress aging of Al–Cu–Mg–Ag single crystal: The effect of the loading orientations. J Alloys Compd. 2020;49(7):128–132.
  • Feng J, Chen Y, Liu H. Effects of post-weld heat treatment on microstructure and mechanical properties of friction stir welded joints of 2219-O aluminium alloy. Mater Sci Technol. 2007;22(1):86–90.
  • Kotadia HR, Babu NH, Zhang H, et al. Microstructural refinement of Al–10.2%Si alloy by intensive shearing. Mater Lett. 2010;64(6):671–673.
  • Yamada R, Itoh Gb, Kurumada Ab, et al. Fatigue crack growth behavior and susceptibility to hydrogen embrittlement in 2000 and 7000 series aluminum alloys. Nippon Kinzoku Gakkaishi/J Jpn Inst Metals. 2016;80(12):745–752.
  • Itoi T, Inoue S, Okagawa K. Fabrication of 2000 series aluminum alloy Lap joint sheets by magnetic pulse welding and their interfacial microstructure observations. Mater Trans. 2017;58(8):1118–1126.
  • Itoi T, Inoue S, Okagawa K. Welding characteristics and effect of gap length on 2000 series aluminum alloy sheet lap joints welded by magnetic pulse welding. Mater Trans. 2017;58(12):1629–1635.
  • Owolabi GM, Thom M, Ajide O, et al. Warner fatigue responses of three AA 2000 series aluminum alloys. J Mater Sci Chem Eng. 2019;7(3):32–48.
  • Starke EAJ, Staley JT. Application of modern aluminum alloys to aircraft. Prog Aerosp Sci. 1996;32(2-3):131–172.
  • Owolabi GM, Thom M, Ajide OO, et al. Tensile properties and fractography of three AA 2000 series aluminum alloys used for aerospace applications. Trans Indian Inst Met. 2019;72(10):2623–2630.
  • Chang T, Fang X, Liu G, et al. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys. J Mater Sci Technol. 2022;124:65–75.
  • Wang CR, Li YP, Tian W, et al. Influence of ultrasonic impact treatment and working current on microstructure and mechanical properties of 2219 aluminium alloy wire arc additive manufacturing parts. J Mater Res Technol. 2022;21:781–797.
  • Zhou Y, Lin X, Kang N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy. J Mater Sci Technol. 2020;37(2):143–153.
  • Yu RZ, Zhao F, Yu SF, et al. Microstructure, properties and T6 heat treatment process optimization for wire arc additive manufacturing ER2319 aluminum deposited metals. Heat Treat Met. 2021;46(04):49–59.
  • Dong MY, Zhao Y, Li Q, et al. Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al−Cu alloy. Trans Nonferrous Metals Soc China. 2022;32(3):750–764.
  • Yu J, Wang JJ, Ni DR, et al. Microstructure and mechanical properties of additive manufactured 2319 alloy by electron beam freeform fabrication. Acta Metall Sinica. 2018;54(12):1725–1734.
  • Picu RC, Vincze G, Ozturk F, et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Scie Eng. 2005;390(1-2):334–343.
  • Nie X, Zhang H, Zhu H, et al. On the role of Zr content into portevin-Le chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy. Mater Lett. 2019;248:5–7.
  • Hu ZH, Qi Y, Nie XJ, et al. The portevin-Le chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting. Mater Charact. 2021;178:111198.
  • Chen J, Chen Z, Guo X, et al. Changing distribution and geometry of S’ in Al-Cu-Mg single crystals during stress aging by controlling the loading orientation. Mater Sci Eng A. 2016;650:154–160.
  • Chen J, Chen Z, Deng Y, et al. Effect of loading orientations on the microstructure and property of Al-Cu single crystal during stress aging. Mater Charact. 2016;117(16):35–40.
  • Yildiz AS, Davut K, Koc B, et al. Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics. Int J Adv Manuf Technol. 2020;108(11-12):3391–3404.
  • Chen C, Sun G, Du W, et al. Effect of equivalent heat input on WAAM Al-Si alloy. Int J Mech Sci. 2022;238:107831.
  • Wang S, Gu H, Wang W, et al. The influence of heat input on the microstructure and properties of wire-arc-additive-manufactured Al-Cu-Sn alloy deposits. Metals (Basel). 2020;10(1):79.
  • Arana M, Ukar E, Rodriguez I, et al. Influence of deposition strategy and heat treatment on mechanical properties and microstructure of 2319 aluminium WAAM components. Mater Des. 2022;221:110974.
  • Gu JL, Gao MJ, Yang SL, et al. Pore formation and evolution in wire plus arc additively manufactured 2319 Al alloy. Addit Manuf. 2019;30:100900.
  • Xue CP, Zhang YX, Mao PC, et al. Improving mechanical properties of wire arc additively manufactured AA2196 Al–Li alloy by controlling solidification defects. Addit Manuf. 2021;43:102019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.