182
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterisation of tin bronze/steel composites by solid–liquid bonding with vibration

, , , , , , , , & show all
Pages 2147-2157 | Received 05 Jan 2023, Accepted 19 Mar 2023, Published online: 31 Mar 2023

References

  • Wang J, Duan L, Wang B. Interface microstructure and bonding energy of layered bimetallic ZCuSn6Pb6Zn3/steel coupling with temperature and pressure. Tribol Int. 2021;155:106754. doi:10.1016/j.triboint.2020.106754
  • Wang Y, Gao Y, Li Y, et al. Review of preparation and application of copper-steel bimetal composites. Emerg Mater Res. 2019;8(4):538–551. doi:10.1680/jemmr.17.00008
  • Peng B, Jie JC, Wang MF, et al. Microstructure characteristics and deformation behavior of tin bronze/ 1010 steel bimetal layered composite by continuous solid/liquid bonding. Mater Sci Eng A. 2022;844:143155. doi:10.1016/j.msea.2022.143155
  • Li Z, Zhao J, Jia F, et al. Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment. Mater Sci Eng A. 2020;787:139513. doi:10.1016/j.msea.2020.139513
  • Hammes G, Schroeder R, Binder C, et al. Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites. Tribol Int. 2014;70:119–127. doi:10.1016/j.triboint.2013.09.016
  • Dong BW, Wang SH, Dong ZZ, et al. Novel insight into dry sliding behavior of Cu-Pb-Sn in-situ composite with secondary phase in different morphology. J Mater Sci Technol. 2020;40:158–167. doi:10.1016/j.jmst.2019.09.025
  • Zhao J, Fu Y, Ma J, et al. Review of cylinder block/valve plate interface in axial piston pumps: theoretical models, experimental investigations, and optimal design. Chin J Aeronaut. 2021;34(1):111–134. doi:10.1016/j.cja.2020.09.030
  • Wen D, Yue T, Xiong Y, et al. High-temperature tensile characteristics and constitutive models of ultrahigh strength steel. Mater Sci Eng A. 2021;803:140491. doi:10.1016/j.msea.2020.140491
  • Kang Y, Zhang G, Wang Z, et al. Effect of two-stage cooling on the microstructure and tribological properties of steel-copper bimetals. Materials. 2022;15(2):492. doi:10.3390/ma15020492
  • Song D, Wang T, Jiang S, et al. Microstructure and mechanical properties of copper-steel laminated and sandwich joints prepared by electron beam welding. J Mater Eng Perform. 2020;29(7):4251–4259. doi:10.1007/s11665-020-04960-1
  • Zhang H, Jiao KX, Zhang JL, et al. Comparisons of the microstructures and micro-mechanical properties of copper/steel explosive-bonded wave interfaces. Mater Sci Eng A. 2019;756:430–441. doi:10.1016/j.msea.2019.04.064
  • Krishna BV, Venugopal P, Rao KP. Use of powder metallurgy preforms as alternative to produce bimetallic tubes. Mater Sci Technol. 2005;21(6):630–640. doi:10.1179/174328405X14029
  • Jie J, Liu C, Wang S, et al. Characterisation of steel/nickel bronze clad strips prepared by continuous solid/liquid bonding method. Mater Sci Technol. 2019;35(15):1840–1847. doi:10.1080/02670836.2019.1651015
  • Zhang Y, Liu J, Fu Y, et al. Microstructure and fabrication of Cu-Pb-Sn/Q235 laminated composite by semi-solid rolling. Metals. 2018;8(9):722. doi:10.3390/met8090722
  • Gladkovsky SV, Kuteneva SV, Sergeev SN. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater Charact. 2019;154:294–303. doi:10.1016/j.matchar.2019.06.008
  • Kang Y, Zhang G, Xu H, et al. Effect of phosphorus on interface characterization of steel-copper bimetals in solid-liquid composite casting. Mater Today Commun. 2022;30:103037. doi:10.1016/j.mtcomm.2021.103037
  • Cheng J, Zhao J, Zheng D, et al. Effect of the vacuum heat treatment on the microstructure and mechanical properties of the galvanized-Q235/AZ91D bimetal material produced by solid-liquid compound casting. Met Mater Int. 2021;27(3):545–555. doi:10.1007/s12540-019-00503-z
  • Rodriguez JA, Goodman DW, The nature of the metal-metal bond in bimetallic surfaces. Science. 1992;257(5072):897–903. doi:10.1126/science.257.5072.897
  • Zhang G, Kang Y, Wang M, et al. Atomic diffusion behavior and diffusion mechanism in Fe-Cu bimetal casting process studied by molecular dynamics simulation and experiment. Mater Res Express. 2020;7(9):096519. doi:10.1088/2053-1591/abb90f
  • Xu JJ, Yu DS. Selection and resonance of dendritic growth with oscillatory external sources. J Cryst Growth. 2001;226(2-3):378–392. doi:10.1016/S0022-0248(01)01381-1
  • Jiang W, Chen X, Wang B, et al. Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting. Int J Adv Manuf Technol. 2016;83(1-4):167–175. doi:10.1007/s00170-015-7586-0
  • Takuya T, Toshiro M, Kenji M. Refinement factors of mechanical vibrations on microstructure of Al-7 mass% Si alloys. Mater Trans. 2011;52(5):830–833. doi:10.2320/matertrans.L-MZ201107
  • Sui C, Liu ZJ, Ai XY, et al. Effect of ultrasonic vibration on grain size and precipitated phase distribution of 6061 aluminum alloy welded joint. Crystals (Basel). 2022;12(2):240. doi:10.3390/cryst12020240
  • Wang CJ, Yao BN, Liu ZR, et al. Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface. Int J Plast. 2020;131:102725. doi:10.1016/j.ijplas.2020.102725
  • Tremsin AS, Perrodin D, Losko AS, et al. In-situ observation and analysis of solid-state diffusion and liquid migration in a crystal growth system: A segregation-driven diffusion couple. Acta Mater. 2020;186:434–442. doi:10.1016/j.actamat.2020.01.013
  • Rothman SJ, Peterson NL, Walter CM, et al. Nowicki, the diffusion of copper in iron. J Appl Phys. 1968;39(11):5041. doi:10.1063/1.1655922
  • Galleguillos-Silva R, Vargas-Hernandez Y, Gaete-Garreton L. Wettability of a surface subjected to high frequency mechanical vibrations. Ultrason Sonochem. 2017;35:134–141. doi:10.1016/j.ultsonch.2016.09.011
  • Zheng Y, Ding L, Ye H, et al. Vibration-Induced property change in the melting and solidifying process of metallic nanoparticles. Nanoscale Res Lett. 2017;12:308. doi:10.1186/s11671-017-2085-x
  • Tian ZL, Xu LH, Peng Y, et al. Formation mechanism of the precipitate-free zone in high strength aluminum alloy welds. Acta Metall. Sin. 2008;44(1):91–97.
  • Wu SP, Wang RJ, Chen W, et al. Progress on numerical simulation of vibration in the metal solidification. Acta Metall. Sin. 2018;54(2):247–264. doi:10.11900/0412.1961.2017.00424
  • Fu JH, Miao X, Zuo Q, et al. Heat transfer and field synergy characteristics in a rectangular unit channel under mechanical vibration. Int Commun Heat Mass Transfer. 2022;136:106176. doi:10.1016/j.icheatmasstransfer.2022.106176
  • Tan X, Ling F, Chen W, et al. The temperature field analysis of the implantable medical device based on fluid-solid coupling conjugated heat transfer. Prog Electromagn Res. C. 2019;96:259–271. doi:10.2528/PIERC19080608
  • Gao H, Wu S, Wu Q, et al. Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy. Mater Des. 2020;195:108954. doi:10.1016/j.matdes.2020.108954
  • Song H, Gao H, Wu Q, et al. Effects of segmented thermal-vibration stress relief process on residual stresses, mechanical properties and microstructures of large 2219 Al alloy rings. J Alloys Compd. 2021;886:161269. doi:10.1016/j.jallcom.2021.161269
  • Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mater Sci Eng A. 2011;529:62–73. doi:10.1016/j.msea.2011.08.061

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.