251
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wear and corrosion of CoCrFeNiMnTix high entropy alloy coatings by laser cladding

, , , , &
Pages 2811-2823 | Received 07 Feb 2023, Accepted 14 Jun 2023, Published online: 13 Jul 2023

References

  • Kim K, Park M, Lee W, et al. Effects of sputtering power on mechanical properties of Cr films deposited by magnetron sputtering. Mater Sci Technol. 2008;24(7):838–842. doi:10.1179/174328407X185893
  • Zhou CL, Ngai TWL, Li LJ. Wetting behaviour of laser textured Ti3SiC2 surface with microgrooved structures. Mater Sci Technol. 2016;32(8):805–812. doi:10.1179/1743284715Y.0000000091
  • Sun X, Li W, Huang J, et al. In situ synthesis of TiC/Ti coatings by reactive plasma spraying. Mater Sci Technol. 2020;34(4):511–515. doi:10.1080/02670836.2019.1710922
  • Li HY, Wei DD, Duan JY, et al. Effect of sealing treatment on corrosion behaviours of arc sprayed zinc coatings. Corros Eng, Sci Technol. 2013;48(1):65–70. doi:10.1179/1743278212y.0000000040
  • Wang J, Kuang S, Yua X, et al. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surf Coat Technol. 2020;403:1–8, 126374. doi:10.1016/j.surfcoat.2020.126374
  • Wang Y, Stella J, Darut G, et al. APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion. J Alloys Compd. 2017;699:1095–1103. doi:10.1016/j.jallcom.2017.01.034
  • Zhou Y, Shi Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt Laser Technol. 2021;134:1–13, 106632. doi:10.1016/j.optlastec.2020.106632
  • Hsu CY, Yeh JW, Chen SK, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition. Metall Mater Trans A. 2004;35A:1465–1469. doi:10.1007/s11661-004-0254-x
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;11:698–706. doi:10.1016/j.intermet.2011.01.004
  • Senkov ON, Senkova SV, Miracle DB, et al. A mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater Sci Eng. 2013;565:51–62. doi:10.1016/j.msea.2012.12.018
  • Gali A, George EP. Tensile properties of high-and medium-entropy alloys. Intermetallics. 2013;39:74–78. doi:10.1016/j.intermet.2013.03.018
  • Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755. doi:10.1016/j.actamat.2013.06.018
  • Kuznetsov AV, Shaysultanov DG, Stepanov ND, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng A. 2012;533:107–118. doi:10.1016/j.msea.2011.11.045
  • Kuznetsov AV, Shaysultanov DG, Stepanov ND, et al. Superplasticity of AlCoCrCuFeNi high entropy alloy. Mater Sci Forum. 2013;735:146–151. doi:10.4028/www.scientific.net/MSF.735.146
  • Fu Y, Huang C, Du CW, et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding. Corros Sci. 2021;191:1–12, 109727. doi:10.1016/j.corsci.2021.109727
  • Kwok CT, Man HC, Cheng FT, et al. Developments in laser-based surface engineering processes: with particular reference to protection against cavitation erosion. Surf Coat Technol. 2016;291:189–204. doi:10.1016/j.surfcoat.2016.02.019
  • Zhang H, Pan Y, He YZ. Synthesis and characterization of FeCoNiCrCu highentropy alloy coating by laser cladding. Mater Des. 2011;32:1910–1915. doi:10.1016/j.matdes.2010.12.001
  • Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf Coat Technol. 2021;405:1–33, 126522. doi:10.1016/j.surfcoat.2020.126522
  • Zhang SY, Han B, Li MY, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating. Intermetallics. 2021;131:1–6, 107111. doi:10.1016/j.intermet.2021.107111
  • Salishchev GA, Tikhonovsky MA, Shaysultanov DG, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd. 2013;591:11–21. doi:10.1016/j.jallcom.2013.12.210
  • Hassan MA, Ghayad IM, Mohamed ASA, et al. Improvement ductility and corrosion resistance of CoCrFeNi and AlCoCrFeNi HEAs by electroless copper technique. J Mater Res Technol. 2021;13:463–485. doi:10.1016/j.jmrt.2021.04.083
  • Haq MA, Song Y, Lee H, et al. An in-situ approach for fabricating network reinforced CoCrFeNi matrix composite. Mater Sci Eng A. 2021;818:1–6, 141405. doi:10.1016/j.msea.2021.141405
  • Shen Q, Kong XD, Chen XZ, et al. Powder plasma arc additive manufactured CoCrFeNi(SiC)x high-entropy alloys: microstructure and mechanical properties. J Pre-proof. 2020;282:1–11, 128736.
  • Bahrami A, Mohammadnejad A, Sajadi M. Microstructure and mechanical properties of spark plasma sintered AlCoFeMnNi high entropy alloy (HEA)-carbon nanotube (CNT) nanocomposite. J Alloys Compd. 2021;862:1–7, 158577. doi:10.1016/j.jallcom.2020.158577
  • Zhang S, Wu CL, Zhang CH, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Opt Laser Technol. 2016;84:23–31. doi:10.1016/j.optlastec.2016.04.011
  • Liu SS, Zhang M, Zhao GL, et al. Microstructure and properties of ceramic particle reinforced FeCoNiCrMnTi high entropy alloy laser cladding coating. Intermetallics. 2022;140:1–9, 107402. doi:10.1016/j.intermet.2021.107402
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829. doi:10.2320/matertrans.46.2817
  • Zhang F, Li G. Effect of Cr on magnetic properties of non-oriented silicon steel. Spec Steel. 2010;31:57–58.
  • Binnewies M, Milke E. Thermochemical data of elements and compounds. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH & Co.; 2002.
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Nat Sci: Mater Int. 2011;21:433–446. doi:10.1016/s1002-0071(12)60080-x
  • Nie MH, Zhang S, Wang ZY, et al. Laser cladding of 17-4 PH stainless steel coatings: microstructure, texture characterization, and corrosion resistance. J Mater Eng Perform. 2022;32(12):5545–5553. doi:10.1007/s11665-022-07484-y
  • Can Y, Shen JQ, Geng KP, et al. Fabrication of FeCoCrNiMnAl0.5-FeCoCrNiMnAl gradient HEA coating by laser cladding technique. Surf Coat Technol. 2021;412:1–10, 127077. doi:10.1016/j.surfcoat.2021.127077
  • Huang C, Zhang YZ, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4 V substrate. Mater Des. 2021;41:338–343. doi:10.1016/j.matdes.2012.04.049
  • Wu H, Zhang S, Wang ZY, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating: The role of Mo. Int J Refract Met Hard Mater. 2022;102:1–10, 105721. doi:10.1016/j.ijrmhm.2021.105721
  • Ghadami F, Ghadami S, Davouodabadi MA. Sliding wear behavior of the nanoceria-doped AlCrFeCoNi high-entropy alloy coatings deposited by Air plasma spraying technique. J Therm Spray Technol. 2022;31:1263–1275. doi:10.1007/s11666-022-01354-8
  • Wu ZX, He MJ, Feng CS, et al. Effects of annealing on the microstructures and wear resistance of CoCrFeNiMn high-entropy alloy coatings. J Therm Spray Technol. 2022;31:1244–1251. doi:10.1007/s11666-021-01292-x
  • Wang JY, Zhang BS, Yu YQ, et al. Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf Coat Technol. 2020;384:1–27, 125337. doi:10.1016/j.surfcoat.2020.125337
  • Ghadami F, Davoudabadi MA, Ghadami S. Cyclic oxidation properties of the nanocrystalline AlCrFeCoNi high-entropy alloy coatings applied by the atmospheric plasma spraying technique. Coatings. 2022;12(3):1–16, 372. doi:10.3390/coatings12030372
  • Tong YL, Hua K, Zhang F, et al. Wear- and surface-fatigue-mediated damage during fretting in a high-strength titanium alloy. ACS Appl Eng Mater. 2023;1(1):200–213. doi:10.1021/acsaenm.2c00042
  • Kwok CT, Cheng FT, Man HC. Laser-fabricated Fe-Ni-Co-Cr-B austenitic alloy on steels. part II. corrosion behaviour and corrosion-erosion synergism. Surf Coat Technol. 2001;145:206–214. doi:10.1016/S0257-8972(01)01292-0
  • Lu CW, Lu YS, Lai ZH, et al. Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt-% NaCl solution. J Alloys Compd. 2020;842:1–29, 155824. doi:10.1016/j.jallcom.2020.155824

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.