113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phase formation and electrical properties of SBNLT ceramics prepared via combustion technique

, , , , , & show all
Pages 3065-3075 | Received 23 Oct 2022, Accepted 16 Jul 2023, Published online: 25 Jul 2023

References

  • Baltazar-Rodrigues J, Rodrigues P Jr, Eiras JA, et al. Preparation and characterization of PbTiO3 ceramics modified by a natural mixture of rare earth oxides of xenotime. Mat Res. 2014;17(1):1–6. doi:10.1590/S1516-14392013005000142
  • Isupov VA, Rubinstein OV, Rotenberg BA, et al. Ferroelectric ceramics in the PbMg1/3Nb2/3O3-PbCd1/3Nb2/3O3 system. Ferroelectr Lett Sect. 2005;32:23–29. doi:10.1080/07315170590963671
  • Ujma Z, Handerek J. The pyroelectric effect in single crystal and ceramic PbZrO3. Ferroelectrics. 1981;33:37–42. doi:10.1080/00150198108008067
  • Hiruma YJ, Nagata H, Takenaka T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys. 2009;105(8):084112. doi:10.1063/1.3115409
  • Singh KN, Tamrakar P, Soni S, et al. Structural and Raman spectroscopic study of antimony doped Bi0.5Na0.5TiO3 electroceramic. J Mater Sci Chem Eng. 2015;3:43–49. doi: 10.4236/MSCE.2015.38007.
  • Smolensky GA, Isupov VA, Agranovskaya AI, et al. Sov, New ferroelectrics of complex composition. Phys Solid State. 1961;2:2651.
  • Lee WC, Huang CY, Tsao LK, et al. Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3–(Ba, Sr)TiO3 lead-free piezoelectric ceramics. J Alloys Compd. 2010;492(1–2):307, doi:10.1016/j.jallcom.2009.11.083
  • Mahajan A, Zhang H, Wu J, et al. Effect of phase transitions on thermal depoling in lead-free 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 based piezoelectrics. J Phys Chem C. 2017;121(10):5709–5718. doi:10.1021/acs.jpcc.6b12501
  • Thatawong B, Bhupaijit P, Lamyai Y, et al. Dielectric and piezoelectric properties near the morphotropic phase boundary for 0.94BNT-0.06BT ceramics synthesized by the solid-state combustion technique. Ferroelectric. 2022;586:199–212. doi:10.1080/00150193.2021.2014271
  • Marwata MA, Xie B, Ashtar M, et al. High remnant polarization, high dielectric constant and impedance performance of Nb/In Co-doped Bi0.49La0.01Na0.49Li0.01TiO3−δ ceramics. Ceram Int. 2018;44(6):6843–6850. doi:10.1016/j.ceramint.2018.01.108
  • Duan SF, Zhao Z, Ge RF, et al. Phase structure, piezoelectric, ferroelectric, and electric-field-induced strain properties of Nb-modified 0.8Bi0.5Na0.5TiO3-0.2Sr0.85Bi0.1TiO3 ceramics. Ceram Int. 2017;43:13612–13617. doi:10.1016/j.ceramint.2017.07.070
  • Zhang L, Wang Z, Li Y, et al. Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. J Eur Ceram Soc. 2019;39:3057–3063. doi:10.1016/j.jeurceramsoc.2019.02.004
  • Wu J, Mahajan A, Riekehr L, et al. Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy. 2018;50:723–732. doi:10.1016/j.nanoen.2018.06.016
  • Kornphom C, Yotthuan S, Kidkhunthod P, et al. Stabilization of the morphotropic phase boundary in (1-x)BNT-xBCTS ceramics prepared by the solid-state combustion technique. Radiat Phys Chem. 2021;188:109638. doi:10.1016/j.radphyschem.2021.109638
  • Kornphom C, Laowanidwatana A, Bongkarn T. The effects of sintering temperature and content of x on phase formation, microstructure and dielectric properties of (1−x)(Bi0.4871Na0.4871La0.0172TiO3)−x(BaZr0.05Ti0.95O3) ceramics prepared via the combustion technique. Ceram Int. 2013;39:S421–S426. doi:10.1016/j.ceramint.2012.10.106
  • Thawong P, Kornphom C, Prasertpalichat S, et al. Effect of firing temperatures on properties of BNT-BCTZ-0.007 mol% BFCO lead free piezoelectric ceramics synthesized by the solid state combustion method. Ceram Int. 2017;43:S172–S181. doi:10.1016/j.ceramint.2017.05.292
  • Julphunthong P, Chootin S, Bongkarn T. Phase formation and electrical properties of Ba(ZrxTi1−x)O3 ceramics synthesized through a novel combustion technique. Ceram Int. 2013;39:S415–S419. doi:10.1016/j.ceramint.2012.10.105
  • Chootin S, Bongkarn T. Optimum conditions for preparation of high-performance (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 ceramics by solid-state combustion. J Electron Mater. 2017;46:5215–5224. doi:10.1007/s11664-017-5533-6
  • Li W, Xu ZJ, Chu R, et al. Enhanced ferroelectric properties in (Ba1−xCax)(Ti0.94Sn0.06)O3 lead-free ceramics. J Eur Ceram Soc. 2012;32:517–520. doi:10.1016/j.jeurceramsoc.2011.09.020
  • Mathrmool K, Akkarapongtrakul A, Sukkum S, et al. Low temperature fabrication of lead-free KNN-BNT ceramics via the combustion technique. Ferroelectrics. 2014;458:136–145. doi:10.1080/00150193.2013.850351
  • Anton EM, Jo W, Trodahl J, et al. Effect of K0.5Na0.5NbO3 on properties at and off the morphotropic phase boundary in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 ceramics. Jpn J Appl Phys. 2011;50:055802. doi:10.1143/JJAP.50.055802
  • Mahmood NB, Alshakarchi E. Dielectric properties of BNT-xBT prepared by hydrothermal process. J Adv Dielectr. 2017;7:1750019. doi:10.1142/S2010135X17500199
  • Shi J, Liu X, Zhu F, et al. Oxygen vacancy migration and its lattice structural origin in A-site non-stoichiometric bismuth sodium titanate perovskites. J Materiomics. 2022;8:719–729. doi:10.1016/j.jmat.2021.09.008
  • Sakai Y, Karaki T. Effect of substrate thermal expansion coefficients on the properties of (Bi,Na)TiO3–BaTiO3 thick films around the morphotropic phase boundary. Jpn J Appl Phys. 2020;59:6. doi:10.35848/1347-4065/ab8168
  • Yan F, Shi Y, Zhou X, et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. J Chem Eng. 2021;417:127945. doi:10.1016/j.cej.2020.127945
  • Bhupaijit P, Nuntawong N, Kidkhunthod P, et al. Enhanced electrical properties near the morphotropic phase boundary in lead-free Bi0.5Na0.34K0.11Li0.05Ti1−xNixO3−δ ceramics. Rad Phys Chem. 2021;189:109716. doi:10.1016/j.radphyschem.2021.109716
  • Luangpangai A, Bhupaijit P, Thountom S, et al. Sintering temperature effect on the structural phase, microstructure and electrical properties of 0.92BNKLT-0.08BST ceramics prepared via the solid state combustion method. Integr Ferroelectr. 2022;222(1):180–189. doi:10.1080/10584587.2021.1961528
  • Du H, Zhou W, Zhu D, et al. Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc. 2008;91(9):2903–2909. doi:10.1111/j.1551-2916.2008.02528.x
  • Liu L, Shi D, Huang Y, et al. Quantitative description of the diffuse phase transition of BNT-NKN ceramics. Ferroelectrics. 2012;432:65–72. doi:10.1080/00150193.2012.707854
  • Shi J, Zhao Y, He J, et al. Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl Energy Mater. 2022;5(3):3436–3446. doi:10.1021/acsaem.1c04017
  • Shi J, Dong R, He J, et al. Regulating ferroelectric polarization and dielectric properties of BT-based lead-free ceramics. J Alloys Compd. 2023;933:167746. doi:10.1016/j.jallcom.2022.167746
  • Ma W, Zhu Y, Marwat MA, et al. Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics. J Mater Chem C. 2019;7:281–288. doi:10.1039/C8TC04447C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.