239
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Compositionally gradient PVD CrAlSiN films: structural examination and oxidation resistance

, , , , , , , , & show all
Pages 612-618 | Received 14 Oct 2015, Accepted 03 May 2016, Published online: 14 Jun 2016

References

  • W. D. Callister: ‘Fundamentals of materials science and engineering’, 2nd edn, 252–270; 2000, Hoboken, USA, Wiley & Sons.
  • Y. T. Cheng and C. M. Cheng: ‘Scaling approach to conical indentation in elastic–plastic solids with work hardening’, J. Appl. Phys., 1998, 84, 1284–1291. doi: 10.1063/1.368196
  • R. Wei, B. Shogrin, P. J. Wilbur, O. Ozturk, D. L. Williamson, I. Ivanov and E. Metin: ‘Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source’, J. Tribol., 1994, 116, (4), 870–876. doi: 10.1115/1.2927347
  • R. L. Simencio Otero, L. C. F. Canale, D. Said Schicchi, E. Agaliotis, G. E. Totten and G. Sánchez Sarmiento: ‘Epoxidized soybean oil: evaluation of oxidative stabilization and metal quenching/heat transfer performance’, J. Mater. Eng. Perform., 2013, 22, (7), 1937–1944. doi: 10.1007/s11665-013-0546-7
  • G. Pantazopoulos, T. Papazoglou, P. Psyllaki, G. Sfantos, S. Antoniou and K. Papadimitriou: ‘Sliding wear behaviour of a liquid nitrocarburised precipitation-hardening (PH) stainless steel’, Surf. Coat. Technol., 2004, 187, 77–85. doi: 10.1016/j.surfcoat.2004.01.015
  • G. Pantazopoulos and S. Antoniou: ‘Wear-related failures of nitrocarburized steels: some microstructural and morphological observations', JFAP, 2004, 6, 51–57. doi: 10.1361/15477020421755
  • Y. H. Yoo, D. P. Le, J. G. Kim, S. K. Kim and P. V. Vinh: ‘Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.-% NaCl solution’, Thin Solid Films, 2008, 516, 3544–3548. doi: 10.1016/j.tsf.2007.08.069
  • O. Knotek, M. Böhmer and T. Leyendecker: ‘On structure and properties of sputtered Ti and Al based hard compound films', J. Vac. Sci. Technol., 1986, A4, 2695–2700. doi: 10.1116/1.573708
  • C. Jarms, H.-R. Stock and P. Mayr: ‘Mechanical properties, structure and oxidation behavior of Ti1−xAlxN-hard coatings deposited by pulsed d.c. plasma-assisted chemical vapor deposition (PACVD)’, Surf. Coat. Technol., 1998, 108–109, 206–210. doi: 10.1016/S0257-8972(98)00557-X
  • A. E. Reiter, V. H. Derflinger, B. Hanselmann, T. Bachmann and B. Sartory: ‘Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation’, Surf. Coat. Technol., 2005, 200, 2114–2122. doi: 10.1016/j.surfcoat.2005.01.043
  • P. W. Shum, Y. F. Xu, Z. F. Zhou and K. Y. Li: ‘Effects of carbon and nitrogen ion implantations on surface and tribological properties of Ti–Al–Si–N coatings', Surf. Eng., 2012, 28, (2), 149–154. doi: 10.1179/1743294411Y.0000000071
  • B. Warcholinski and A. Gilewicz: ‘Mechanical properties of multilayer TiAlN/CrN coatings deposited by cathodic arc evaporation’, Surf. Eng., 2011, 27, (7), 291–297. doi: 10.1179/026708410X12786785573355
  • Y.-Y. Chang, C.-P. Chang, D.-Y. Wang, S.-M. Yang and W. Wu: ‘High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process', J. Alloy Compd., 2008, 461, 336–341. doi: 10.1016/j.jallcom.2007.06.084
  • C. Y. Yu, S. B. Wang, T. B. Li and Z. X. Zhang: ‘Tribological behavior of CrAlN coatings at 600°C’, Surf. Eng., 2013, 29, (4), 318–321. doi: 10.1179/1743294412Y.0000000100
  • J. Wu, N. He, H. Li, X. Liu, L. Ji, X. Huang and J. Chen: ‘Deposition and characterization of TiAlSiN coatings prepared by hybrid PVD coating system’, Surf. Interface Anal., 2015, 47, (2), 184–191. doi: 10.1002/sia.5680
  • S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova and J. Prochazka: ‘Different approaches to superhard coatings and nanocomposites', Thin Solid Films, 2005, 476, (1), 1–29. doi: 10.1016/j.tsf.2004.10.053
  • J. Musil: ‘ Properties of hard nanocomposite thin films' in ‘Nanocomposite thin films and coatings, processing, properties and performance’, (ed. Imperial College Press), 281–327; 2007.
  • J. Musil: ‘Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness', Surf. Coat. Technol., 2012, 207, 50–65. doi: 10.1016/j.surfcoat.2012.05.073
  • P. Hobular, M. Jilek and M. Sima: ‘Present and possible future applications of superhard nanocomposite coatings', Surf. Coat. Technol., 2000, 133–134, 145–151. doi: 10.1016/S0257-8972(00)00956-7
  • J. C. Oliveira, F. Fernandes, F. Ferreira and A. Cavaleiro: ‘Tailoring the nanostructure of Ti–Si–N thin films by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode’, Surf. Coat. Technol., 2015, 264, 140–149. doi: 10.1016/j.surfcoat.2014.12.065
  • Y. H. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky and E. I. Meletis: ‘Mechanical and tribological properties of TiN/Ti multilayer coating’, Surf. Coat. Technol., 2010, 205, (1), 146–151. doi: 10.1016/j.surfcoat.2010.06.023
  • J. T. M. De Hosson and A. Cavaleiro, ‘Galileo comes to the surface: nanostructured coatings', Springer Science+Business Media (Eds.), 1–24; 2007, New York, Springer.
  • Y. X. Wang, S. Zhang, J.-W. Lee, W. S. Lew, D. Sun and B. Li: ‘Toward hard yet tough CrAlSiN coatings via compositional grading’, Surf. Coat. Technol., 2013, 231, 346–352. doi: 10.1016/j.surfcoat.2012.03.036
  • S. Zhang, L. Wang, Q. Wang and M. Li: ‘A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: I. Microstructure and mechanical properties', Surf. Coat. Technol., 2013, 214, 160–167. doi: 10.1016/j.surfcoat.2012.05.144
  • H.-W. Chen, Y.-C. Chan, J.-W. Lee and J.-G. Duh: ‘Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment’, Surf. Coat. Technol., 2011, 206, 1571–1576. doi: 10.1016/j.surfcoat.2011.06.009
  • H.-W. Chen, Y.-C. Chan, J.-W. Lee and J.-G. Duh: ‘Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings', Surf. Coat. Technol., 2010, 205, 1189–1194. doi: 10.1016/j.surfcoat.2010.08.156
  • Y.-Y. Chang, C.-M. Cheng, Y.-Y. Liou, W. Tillmann, F. Hoffmann and T. Sprute: ‘High temperature wettability of multicomponent CrAlSiN and TiAlSiN coatings by molten glass', Surf. Coat. Technol., 2013, 231, 24–28. doi: 10.1016/j.surfcoat.2012.04.050
  • T. Polcar and A. Cavaleiro: ‘High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – structure and oxidation’, Mater. Chem. Phys., 2011, 129, (1–2), 196–201. doi: 10.1016/j.matchemphys.2011.03.078
  • S. Veprek and M. G. J. Veprek-Heijman: ‘The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites', Surf. Coat. Technol., 2007, 201, 6064–6070. doi: 10.1016/j.surfcoat.2006.08.112
  • S.-H. Kim, J.-K. Kim and K.-H. Kim: ‘Influence of deposition conditions on the microstructure and mechanical properties of Ti–Si–N films by DC reactive magnetron sputtering’, Thin Solid Films, 2002, 420–421, 360–365. doi: 10.1016/S0040-6090(02)00833-7
  • PC Powder Diffraction Files, JCPDS-ICDD, 2003.
  • Z. Shihong, W. Lei, W. Qimin and L. Mingxi: ‘A superhard CrAlSiN superlattice coating deposited by a multi-arc ion plating: II. Thermal stability and oxidation resistance’, Surf. Coat. Technol., 2013, 214, 153–159. doi: 10.1016/j.surfcoat.2012.05.143
  • S. K. Kim, V. V. Le, P. V. Vinh and J. W. Lee: ‘Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films', Surf. Coat. Technol., 2008, 202, 5400–5404. doi: 10.1016/j.surfcoat.2008.06.019
  • P. Ren, S. Zhu and F. Wang: ‘Characterization and oxidation behavior of a sputtered nanocomposite Ni+CrAlYSiHfN coating’, Corrosion, 2015, 71, (4), 523–535. doi: 10.5006/1492
  • H. C. Barshilia, B. Deepthi and K. S. Rajam: ‘Deposition and characterization of CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering’, Surf. Coat. Technol., 2007, 201, (24), 9468–9475. doi: 10.1016/j.surfcoat.2007.04.002
  • D. B. Lee, T. D. Nguyen and S. K. Kim: ‘Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000°C’, Surf. Coat. Technol., 2009, 203, (9), 1199–1204. doi: 10.1016/j.surfcoat.2008.10.011
  • J. Laube, S. Gutsch, D. Hiller, M. Bruns, C. Kübel, C. Weiss and M. Zacharias: ‘Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition’, J. Appl. Phys., 2014, 116, (22), 223501-1–223501-7. doi: 10.1063/1.4904053
  • L. E. Koutsokeras, G. Abadias and P. Patsalas: ‘Texture and microstructure evolution in single-phase TixTa1−xN alloys of rocksalt structure’, J. Appl. Phys., 2011, 110, (4), 043535-1–043535-5. doi: 10.1063/1.3622585
  • P. Patsalas, C. Gravalidis and S. Logothetidis: ‘Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films', J. Appl. Phys., 2004, 96, (11), 6234–6235. doi: 10.1063/1.1811389
  • D. Chaliampalias, G. Vourlias, E. Pavlidou and K. Chrissafis: ‘Examination of the oxidation resistance of Cr-Mo-V tool steel by thermal analysis', Therm. Anal. Calorim., 2012, 108, 677–684. doi: 10.1007/s10973-011-2073-9
  • G. Vourlias, D. Chaliampalias, T. T. Zorba, E. Pavlidou, P. Psyllaki, K. M. Paraskevopoulos, G. Stergioudis and K. Chrissafis: ‘A combined study of the oxidation mechanism and resistance of AISI D6 steel exposed at high temperature environments', Appl. Surf. Sci., 2011, 257, 6687–6698. doi: 10.1016/j.apsusc.2011.02.103
  • D. Chaliampalias, L. Kolaklieva, R. Kakanakov, K. Chrissafis and G. Vourlias: ‘Thermal stability of nanocomposite quaternary nitrides', Proceedings of the 11th European Symposium on ‘Thermal Analysis and Calorimetry’, Espoo, Finland, August 2014, p. 93.
  • D. Chaliampalias, L. Kolaklieva, R. Kakanakov, K. Saltidou, C. Prochaska, V. Chitanov, T. Cholakova, H. Bahchedjiev, S. Sotiropoulos, D. Sazou, E. Pavlidou, E. K. Polychroniadis, K. Chrissafis and G. Vourlias: ‘Thermal and corrosion resistance of nanocomposite gradient TiAlSiN films', Therm. Anal. Calorim., 2016, 123, 169–179. doi: 10.1007/s10973-015-4961-x
  • G. Abadias, L. E. Koutsokeras, A. Siozios and P. Patsalas: ‘Stress, phase stability and oxidation resistance of ternary Ti-Me-N (Me = Zr, Ta) hard coatings', Thin Solid Films, 2013, 538, 56–70. doi: 10.1016/j.tsf.2012.10.119
  • C. M. Koller, R. Hollerweger, R. Rachbauer, S. Kolozsvári, J. Paulitsch and P. H. Mayrhofer: ‘Annealing studies and oxidation tests of a hybrid multilayer arrangement of cathodic arc evaporated Ti–Al–N and reactively sputtered Ta–Al–N coatings', Surf. Coat. Technol., 2015, 283, 89–95. doi: 10.1016/j.surfcoat.2015.10.054
  • R. Forsén, M. Johansson, M. Odén and N. Ghafoor: ‘Decomposition and phase transformation in TiCrAlN thin coatings', J. Vac. Sci. Technol. A, 2012, 30, (6), 061506-1–061506-8. doi: 10.1116/1.4757953
  • N. Schalk, C. Mitterer, J. Keckes, M. Penoy and C. Michotte: ‘Influence of residual stresses and grain size on the spinodal decomposition of metastable Ti1−xAlxN coatings', Surf. Coat. Technol., 2012, 209, 190–196. doi: 10.1016/j.surfcoat.2012.08.052
  • L. Rogström, J. Ullbrand, J. Almer, L. Hultman, B. Jansson and M. Odén: ‘Strain evolution during spinodal decomposition of TiAlN thin films', Thin Solid Films, 2012, 520 (17), 5542–5549. doi: 10.1016/j.tsf.2012.04.059
  • B. Alling, A. V. Ruban, A. Karimi, O. E. Peil, S. I. Simak, L. Hultman and I. A. Abrikosov: ‘Mixing and decomposition thermodynamics of c- Ti1-xAlxN from first-principles calculations', Phys. Rev. B Condens. Matter Mater. Phys., 2007, 75, (4), 045123-1–045123-13. doi: 10.1103/PhysRevB.75.045123
  • J. L. Endrino, C. Rhammar, A. Gutiérrez, R. Gago, D. Horwat, L. Soriano, G. Fox-Rabinovich, D. Martín, Y. Marero, J. Guo, J.-E. Rubensson and J. Andersson: ‘Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing’, Acta Mater., 2011, 59, 6287–6296. doi: 10.1016/j.actamat.2011.06.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.