1,701
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and performance enhancements of wear-resistant, transparent PU/SiO2 superhydrophobic coating

, , , , , , , & show all
Pages 139-145 | Received 26 May 2016, Accepted 05 Sep 2016, Published online: 14 Oct 2016

References

  • Feng L, Li S, Li Y, et al. Super–hydrophobic surfaces: from natural to artificial. Adv Mater. 2002;14(24):1857–1860. doi: 10.1002/adma.200290020
  • Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater. 2006;18(23):3063–3078. doi: 10.1002/adma.200501961
  • Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling. 2006;22(5):339–360. doi: 10.1080/08927010600980223
  • Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem. 2008;18(6):621–633. doi: 10.1039/B711226B
  • Yu HB, Li RF. Preparation and properties of biomimetic superhydrophobic composite coating. Surf Eng. 2016;32(2):79–84. doi: 10.1179/1743294414Y.0000000301
  • Bhushan B, Jung YC, Niemietz A, et al. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes. Langmuir. 2009;25(3):1659–1666. doi: 10.1021/la802491k
  • Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–961. doi: 10.1021/la0401011
  • Bhushan B, Jung YC, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc London A: Math Phys Eng Sci. 2009;367(1894):1631–1672. doi: 10.1098/rsta.2009.0014
  • Lu Y, Sathasivam S, Song J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil. Science. 2015;347(6226):1132–1135. doi: 10.1126/science.aaa0946
  • Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater. 2008;20(21):4049–4054. doi: 10.1002/adma.200800651
  • Ogihara H, Xie J, Okagaki J, et al. Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir. 2012;28(10):4605–4608. doi: 10.1021/la204492q
  • Zhang H, Lamb RN. Superhydrophobic treatment for textiles via engineering nanotextured silica/polysiloxane hybrid material onto fibres. Surf Eng. 2009;25(1):21–24. doi: 10.1179/174329408X271390
  • Ruan M, Li W, Wang B, et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates. Langmuir. 2013;29(27):8482–8491. doi: 10.1021/la400979d
  • Wang CF, Lin SJ. Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Appl Mater Interf. 2013;5(18):8861–8864. doi: 10.1021/am403266v
  • Zhang J, Seeger S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Func Mater. 2011;21(24):4699–4704. doi: 10.1002/adfm.201101090
  • Dunderdale GJ, Urata C, Sato T, et al. Continuous, high-speed and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Appl Mater Interf. 2015;7(34):18915–18919. doi: 10.1021/acsami.5b06207
  • Wu L, Li L, Li B, et al. Magnetic, durable, and polyurethane@ Fe3O4@ SiO2@ fluoropolymer sponges for selective oil absorption and oil/water superhydrophobic separation. ACS Appl Mater Interf. 2015;7(8):4936–4946. doi: 10.1021/am5091353
  • Daniello RJ, Waterhouse NE, Rothstein JP. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids (1994-present). 2009;21(8):085103. doi: 10.1063/1.3207885
  • Srinivasan S, Kleingartner JA, Gilbert JB, et al. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. Phys Rev Lett. 2015;114(1):014501. doi: 10.1103/PhysRevLett.114.014501
  • Dong H, Cheng M, Zhang Y, et al. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. J Mater Chem A. 2013;1(19):5886–5891. doi: 10.1039/c3ta10225d
  • Zhu Y, Hu YM, Nie HY, et al. Superhydrophobicity via organophosphonic acid derivatised aluminium films. Surf Eng. 2016;32(2):114–118. doi: 10.1179/1743294415Y.0000000088
  • Ramezani M, Vaezi MR, Kazemzadeh A. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties. Appl Surf Sci. 2014;317:147–153. doi: 10.1016/j.apsusc.2014.08.095
  • Xu L, Karunakaran RG, Guo J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl Mater Interf. 2012;4(2):1118–1125. doi: 10.1021/am201750h
  • Huang YF, Huang C, Zhong YL, et al. Preparing superhydrophobic surfaces with very low contact angle hysteresis. Surf Eng. 2013;29(8):633–636. doi: 10.1179/1743294412Y.0000000087
  • Venkateswara Rao A, Latthe SS, Nadargi DY, et al. Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method. J Colloid Interf Sci. 2009;332(2):484–490. doi: 10.1016/j.jcis.2009.01.012
  • Guo YB, Yang L, Wang DG. Preparation and hydrophobic behaviours of polystyrene composite coating. Surf Eng. 2016;32(2):95–101. doi: 10.1179/1743294415Y.0000000016
  • Manca M, Cannavale A, De Marco L, et al. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol−gel processing. Langmuir. 2009;25(11):6357–6362. doi: 10.1021/la804166t
  • Ebert D, Bhushan B. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir. 2012;28(31):11391–11399. doi: 10.1021/la301479c
  • Huovinen E, Hirvi J, Suvanto M, et al. Micro–micro hierarchy replacing micro–nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Langmuir. 2012;28(41):14747–14755. doi: 10.1021/la303358h
  • Ke Q, Fu W, Jin H, et al. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane. Surf Coat Technol. 2011;205(21):4910–4914. doi: 10.1016/j.surfcoat.2011.04.073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.