2,054
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Anti-fingerprint properties of engineering surfaces: a review

, , &
Pages 85-120 | Received 22 Jul 2016, Accepted 31 Oct 2016, Published online: 30 Dec 2016

References

  • Chang SW, Chen CM, He JL. Power modulated plasma-polymerized gradient anti-fingerprint transparent protective coating with a gradient composition. Adv Mater Res. 2012;509:135–137. doi: 10.4028/www.scientific.net/AMR.509.135
  • Heo SY, Park BJ, Jeong JR, et al. Enhanced transmittance, mechanical durability, and anti-fingerprinting qualities of silver nanoparticles deposited onto glass substrates. J Alloys Compd. 2014;602:255–260. doi: 10.1016/j.jallcom.2014.03.019
  • Wang Y, Bhushan B. Wear-resistant and antismudge superoleophobic coating on polyethylene terephthalate substrate using SiO2 nanoparticles. ACS Appl Mater Interfaces. 2015;7(1):743–755. doi: 10.1021/am5067755
  • Wu LYL, Ngian SK, Chen Z, et al. Quantitative test method for evaluation of anti-fingerprint property of coated surfaces. Appl Surf Sci. 2011;257(7):2965–2969. doi: 10.1016/j.apsusc.2010.10.101
  • Wang G, Wang H, Guo Z. A robust transparent and anti-fingerprint superhydrophobic film. Chem Commun. 2013;49(66):7310–7312. doi: 10.1039/c3cc43677b
  • Brown PS, Bhushan B. Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge. J Colloid Interface Sci. 2015;456:210–218. doi: 10.1016/j.jcis.2015.06.030
  • Siriviriyanun A, Imae T. Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces. Chem Eng J. 2014;246:254–259. doi: 10.1016/j.cej.2014.02.066
  • Heo S-Y, Choi H-J, Park B-J, et al. Effect of protective layer on enhanced transmittance, mechanical durability, anti-fingerprint, and antibacterial activity of the silver nanoparticles deposited on flexible substrate. Sensors Actuators A Phys. 2015;221:131–138. doi: 10.1016/j.sna.2014.11.013
  • Block S, Kleyer D, Hupfield P, et al. New anti-fingerprint coatings. Paint Coatings Ind. 2008;24(10):88–92.
  • Muthiah P, Bhushan B, Yun K, et al. Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties. J Colloid Interface Sci. 2013;409:227–236. doi: 10.1016/j.jcis.2013.07.032
  • Bhushan B, Muthiah P. Anti-smudge screening apparatus for electronic touch screens. Microsyst Technol Nanosyst Storage Process Syst. 2013;19(8):1261–1263.
  • Cadd S, Islam M, Manson P, et al. Fingerprint composition and aging: A literature review. Sci Justice. 2015;55(4):219–238. doi: 10.1016/j.scijus.2015.02.004
  • Gogolides E, Ellinas K, Tserepi A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron Eng. 2015;132:135–155. doi: 10.1016/j.mee.2014.10.002
  • Tuteja A, Choi W, McKinley GH, et al. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 2008;33(8):752–758. doi: 10.1557/mrs2008.161
  • Chu Z, Seeger S. Superamphiphobic surfaces. Chem Soc Rev. 2014;43:2784–2798. doi: 10.1039/C3CS60415B
  • Brown PS, Bhushan B. Designing bioinspired superoleophobic surfaces. APL Mater. 2016;4, 015703. doi: 10.1063/1.4935126
  • Valipour MN, Khani R, Rahnama S. Super dewetting surfaces: focusing on their design and fabrication methods. Colloids Surfaces A Physicochem Eng Asp. 2015;484:528–546. doi: 10.1016/j.colsurfa.2015.08.037
  • Valipour Motlagh N, Birjandi FC, Sargolzaei J. Super-non-wettable surfaces: a review. Colloids Surfaces A Physicochem Eng Asp. 2014;448:93–106. doi: 10.1016/j.colsurfa.2014.02.016
  • Jiang T, Guo Z, Liu W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A. 2015;3(5):1811–1827. doi: 10.1039/C4TA05582A
  • Kota AK, Kwon G, Tuteja A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014;6(7):e109, doi:10.1038/am.2014.34.
  • Thomas G. The physics of fingerprints and their detection. J Phys E Sci Instrum. 1978;11:722–731. doi: 10.1088/0022-3735/11/8/002
  • Scruton B, Robins BW, Blott BH. The deposition of fingerprint films. J Phys D Appl Phys. 1975;8(6):714–723. doi: 10.1088/0022-3727/8/6/016
  • Kent T. Latent fingerprints and their detection. J Forensic Sci Soc. 1981;21(1):15–22. doi: 10.1016/S0015-7368(81)71368-9
  • Archer NE, Charles Y, Elliott JA, et al. Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci Int. 2005;154:224–239. doi: 10.1016/j.forsciint.2004.09.120
  • Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int. 2012;223:10–24. doi: 10.1016/j.forsciint.2012.05.018
  • Knowles AM. Aspects of physicochemical methods for the detection of latent fingerprints. J Phys E: Sci Instrum. 1978;11:713–721. doi: 10.1088/0022-3735/11/8/001
  • Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6(4):328–340. doi: 10.1038/nrm1619
  • Milstone LM. Epidermal desquamation. J Dermatol Sci. 2004;36(3):131–140. doi: 10.1016/j.jdermsci.2004.05.004
  • Haftek M. Structural and ultrastructural data on human epidermal lipids. Pathologie Biologie. 2003;51:264–266 doi: 10.1016/S0369-8114(03)00075-0
  • Dahiya RS, Gori M. Probing with and into fingerprints J Neurophysiol. 2010;104(1):1–3. doi: 10.1152/jn.01007.2009
  • Blausen B. Blausen gallery. Wikiversity J Med. 2014;1(2):1–79.
  • Phankosol S, Sudaprasert K, Lilitchan S, et al. Estimation of surface tension of fatty acid methyl ester and biodiesel at different temperatures. Fuel. 2014;126:162–168. doi: 10.1016/j.fuel.2014.02.054
  • Wenzel RN. Resistance of solid surfaces to wetting by water. J Ind Eng Chem. 1936;28:988–994. doi: 10.1021/ie50320a024
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–551. doi: 10.1039/tf9444000546
  • Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir. 2000;16(13):5754–5760. doi: 10.1021/la991660o
  • Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir. 2003;19(20):8343–8348. doi: 10.1021/la0344682
  • Bormashenko E. Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interface Sci. 2015;222:92–103. doi: 10.1016/j.cis.2014.02.009
  • Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces. Science. 2007;318:1618–1622. doi: 10.1126/science.1148326
  • Phani AR. Structural, morphological, wettability and thermal resistance properties of hydro-oleophobic thin films prepared by a wet chemical process. Appl Surf Sci. 2006;253:1873–1881. doi: 10.1016/j.apsusc.2006.03.031
  • Basu BJ, Dinesh Kumar V, Anandan C. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–silica nanocomposite coating system. Appl Surf Sci. 2012;261:807–814. doi: 10.1016/j.apsusc.2012.08.103
  • Zhu X, Zhang Z, Xu X, et al. Facile fabrication of a superamphiphobic surface on the copper substrate. J Colloid Interface Sci. 2012;367:443–449. doi: 10.1016/j.jcis.2011.10.008
  • Wei H, Wang G, Liu G, et al. Formation of porous hydrophobic stainless steel surfaces by maskless electrochemical machining. Surf Eng. 2016;32(2):132–138. doi: 10.1179/1743294415Y.0000000084
  • Lakshmi RV, Bharathidasan T, Bera P, et al. Fabrication of superhydrophobic and oleophobic sol-gel nanocomposite coating. Surf Coatings Technol. 2012;206:3888–3894. doi: 10.1016/j.surfcoat.2012.03.044
  • Viechineski FN, Kubaski ET, Schmidt S, et al. Preparation of transparent hydrophobic polymeric films spray-deposited on substrates. Surf Eng. 2016;844:1–6. doi: 10.1080/02670844.2016.1209623
  • Srinivasan S, Chhatre SS, Mabry JM, et al. Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer. 2011;52(14):3209–3218. doi: 10.1016/j.polymer.2011.05.008
  • Ellinas K, Pujari SP, Dragatogiannis DA, et al. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS Appl Mater Interfaces. 2014;6(9):6510–6524. doi: 10.1021/am5000432
  • Godeau G, Amigoni S, Darmanin T, et al. Post-functionalization of plasma treated polycarbonate substrates: an efficient way to hydrophobic, oleophobic plastics. Appl Surf Sci. 2016;387:28–35. doi: 10.1016/j.apsusc.2016.06.053
  • Pham D-C, Na K, Piao S, et al. Hydrophobicity and micro-/nanotribological properties of polymeric nanolines. Surf Eng. 2011;27(4):286–293.
  • Meng H, Wang S, Xi J, et al. Facile means of preparing superamphiphobic surfaces on common engineering metals. J Phys Chem C. 2008;112(30):11454–11458. doi: 10.1021/jp803027w
  • Yu H, Lian Z, Wan Y, et al. Fabrication of durable superamphiphobic aluminum alloy surfaces with anisotropic sliding by HS-WEDM and solution immersion processes. Surf Coatings Technol. 2015;275:112–119. doi: 10.1016/j.surfcoat.2015.05.032
  • Pan Z, Shahsavan H, Zhang W, et al. Superhydro-oleophobic bio-inspired polydimethylsiloxane micropillared surface via FDTS coating/blending approaches. Appl Surf Sci. 2015;324:612–620. doi: 10.1016/j.apsusc.2014.10.146
  • Zhao H, Law KY, Sambhy V. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Langmuir. 2011;27:5927–5935. doi: 10.1021/la104872q
  • Valipour Motlagh N, Birjandi FC, Sargolzaei J, et al. Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method. Appl Surf Sci. 2013;283:636–647. doi: 10.1016/j.apsusc.2013.06.160
  • Wang H, Gao D, Meng Y, et al. Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog Org Coatings. 2015;82:74–80. doi: 10.1016/j.porgcoat.2015.01.012
  • Wu X, Fu Q, Kumar D, et al. Mechanically robust superhydrophobic and superoleophobic coatings derived by sol-gel method. Mater Des. 2016;89:1302–1309. doi: 10.1016/j.matdes.2015.10.053
  • Darmanin T, Guittard F. Fluorophobic effect for building up the surface morphology of electrodeposited substituted conductive polymers. Langmuir. 2009;25(10):5463–5466. doi: 10.1021/la901193g
  • Xi J, Feng L, Jiang L. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. Appl Phys Lett. 2008;92(5):97–100. doi: 10.1063/1.2839403
  • Nagappan S, Park JJ, Park SS, et al. Polymethylhydrosiloxane-based organic–inorganic hybrids for amphiphobic coatings. Compos Interfaces. 2013;20(1):33–43. doi: 10.1080/15685543.2013.762892
  • Uyanik M, Arpaç E, Schmidt H, et al. Heat-resistant hydrophobic-oleophobic coatings. J Appl Polym Sci. 2006;100(3):2386–2392. doi: 10.1002/app.23139
  • Han D, Steckl AJ. Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir. 2009;25(16):9454–9462. doi: 10.1021/la900660v
  • Choi H-J, Shin J-H, Choo S, et al. Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination. Thin Solid Films. 2015;585:76–80. doi: 10.1016/j.tsf.2015.03.046
  • Choi YS, Lee JS, Han JG. Scratch-resistant hydrophobic and oleophobic coatings prepared by simple PECVD method. J Mater Sci. 2014;49:4790–4795. doi: 10.1007/s10853-014-8178-3
  • Tsai H, Lee Y. Facile method to fabricate Raspberry-like particulate films for superhydrophobic. Society. 2007;23:12687–12692.
  • Liu K, Tian Y, Jiang L. Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci. 2013;58(4):503–564. doi: 10.1016/j.pmatsci.2012.11.001
  • Xue Z, Liu M, Jiang L. Recent developments in polymeric superoleophobic surfaces. J Polym Sci Part B Polym Phys. 2012;50(17):1209–1224. doi: 10.1002/polb.23115
  • Steele A, Bayer I, Loth E. Inherently superoleophobic nanocomposite coatings by Spray Atomization. Nano Lett. 2009;9(1):501–505. doi: 10.1021/nl8037272
  • Cao L, Price TP, Weiss M, et al. Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir. 2008;24(5):1640–1643. doi: 10.1021/la703401f
  • Lin T-S, Wu C-F, Hsieh C-T. Enhancement of water-repellent performance on functional coating by using the Taguchi method. Surf Coatings Technol. 2006;200:5253–5258. doi: 10.1016/j.surfcoat.2005.06.019
  • Hsieh C-T, Wu F-L, Chen W-Y. Super water- and oil-repellencies from silica-based nanocoatings. Surf Coatings Technol. 2009;203(22):3377–3384. doi: 10.1016/j.surfcoat.2009.04.025
  • Aulin C, Yun SH, Wagberg L, et al. Design of highly oleophobic cellulose surfaces from structured silicon templates. ACS Appl Mater Interfaces. 2009;1(11):2443–2452. doi: 10.1021/am900394y
  • Gao F, Wang W, Li X, et al. Fabrication of ordered honeycomb amphiphobic films with extremely low fluorine content. J Colloid Interface Sci. 2016;468:70–77. doi: 10.1016/j.jcis.2016.01.035
  • Chhatre SS, Guardado JO, Moore BM, et al. Fluoroalkylated silicon-containing surfaces-estimation of solid-surface energy. ACS Appl Mater Interfaces. 2010;2(12):3544–3554. doi: 10.1021/am100729j
  • Kettwich SC, Pierson SN, Peloquin AJ, et al. Anomalous macromolecular assembly of partially fluorinated polyhedral oligomeric silsesquioxanes. New J Chem. 2012;36:941–946. doi: 10.1039/c2nj20922e
  • Tuteja A, Choi W, Mabry JM, et al. Robust omniphobic surfaces. Proc Natl Acad Sci U S A. 2008;105:18200–18205. doi: 10.1073/pnas.0804872105
  • Choi W, Tuteja A, Chhatre S, et al. Fabrics with tunable oleophobicity. Adv Mater. 2009;21(21):2190–2195. doi: 10.1002/adma.200802502
  • Ramirez SM, Diaz YJ, Campos R, et al. Incompletely condensed fluoroalkyl silsesquioxanes and derivatives: precursors for low surface energy materials. J Am Chem Soc. 2011;133(50):20084–20087. doi: 10.1021/ja208506v
  • Honda K, Morita M, Sakata O, et al. Effect of surface molecular aggregation state and surface molecular motion on wetting behavior of water on poly(fluoroalkyl methacrylate) thin films. Macromolecules. 2010;43(1):454–460. doi: 10.1021/ma901973t
  • Honda K, Morita M, Takahara A. Surface molecular aggregation structure and surface properties of poly (fluoroalkyl acrylate) thin films. Macromolecules. 2005;38:5699–5705. doi: 10.1021/ma050394k
  • Ballarin B, Barreca D, Cassani MC, et al. Fluoroalkylsilanes with embedded functional groups as building blocks for environmentally safer self-assembled monolayers. Langmuir. 2015;31(25):6988–6994. doi: 10.1021/acs.langmuir.5b01416
  • Conder JM, Hoke RA, De Wolf W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol. 2008;42(4):995–1003. doi: 10.1021/es070895g
  • Bellanger H, Darmanin T, Guittard F. Surface structuration (micro and/or nano) governed by the fluorinated tail lengths toward superoleophobic surfaces. Langmuir. 2012;28:186–192. doi: 10.1021/la2034356
  • Darmanin T, Guittard F. Superoleophobic surfaces with short fluorinated chains? Soft Matter. 2013;9:5982–5990. doi: 10.1039/c3sm50643f
  • Bellanger H, Darmanin T, de Givenchy ET, et al. Influence of long alkyl spacers in the elaboration of superoleophobic surfaces with short fluorinated chains. RSC Adv. 2013;3(16):5556–5562. doi: 10.1039/c3ra40302e
  • Bellanger H, Darmanin T. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem Rev. 2014;114:2694–2716. doi: 10.1021/cr400169m
  • Sheen Y-C, Chang W-H, Chen W-C, et al. Non-fluorinated superamphiphobic surfaces through sol-gel processing of methyltriethoxysilane and tetraethoxysilane. Mater Chem Phys. 2009;114:63–68. doi: 10.1016/j.matchemphys.2008.07.132
  • Chen J, Zhong X, Lin J, et al. The facile preparation of self-cleaning fabrics. Compos Sci Technol. 2016;122:1–9. doi: 10.1016/j.compscitech.2015.11.015
  • Xue C-H, Ma J-Z. Long-lived superhydrophobic surfaces. J Mater Chem A. 2013;1(13):4146. doi: 10.1039/c2ta01073a
  • Xiong D, Liu G, Zhang J, et al. Bifunctional core-shell-corona particles for amphiphobic coatings. Chem Mater. 2011;23:2810–2820. doi: 10.1021/cm103673j
  • He Z, Ma M, Lan X, et al. Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter. 2011;7:6435–6443. doi: 10.1039/c1sm05574g
  • Du X, Li X, He J. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity. ACS Appl Mater Interfaces. 2010;2(8):2365–2372. doi: 10.1021/am1003766
  • Lee KK, Ahn CH. Superhydrophilic multilayer silica nanoparticle networks on a polymer microchannel using a spray layer-by-layer nanoassembly method. ACS Appl Mater Interfaces. 2013;5(17):8523–8530. doi: 10.1021/am401945w
  • Ebert D, Bhushan B. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles. J Colloid Interface Sci. 2012;368(1):584–591. doi: 10.1016/j.jcis.2011.09.049
  • Lvov Y, Ariga K, Onda M, et al. Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir. 1997;13(23):6195–6203. doi: 10.1021/la970517x
  • Yang J, Zhang Z, Men X, et al. A simple approach to fabricate regenerable super hydrophobic coatings. New J Chem. 2011;35:576–580. doi: 10.1039/C0NJ00826E
  • Wenzel RN. Surface roughness and contact angle. J Phys Chem. 1949;53(9):1466–1467. doi: 10.1021/j150474a015
  • Wojciechowski L, Kubiak KJ, Mathia TG. Roughness and wettability of surfaces in boundary lubricated scuffing wear. Tribol Int. 2016;93:593–601. doi: 10.1016/j.triboint.2015.04.013
  • Kubiak KJ, Wilson MCT, Mathia TG, et al. Wettability versus roughness of engineering surfaces. Wear. 2011;271:523–528. doi: 10.1016/j.wear.2010.03.029
  • Kubiak KJ, Wilson MCT, Mathia TG, et al. Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters. Scanning. 2011;33:370–377. doi: 10.1002/sca.20289
  • Ourahmoune R, Salvia M, Mathia TG, et al. Surface morphology and wettability of sandblasted PEEK and its composites. Scanning. 2014;36:64–75. doi: 10.1002/sca.21089
  • Belaud V, Valette S, Stremsdoerfer G, et al. Wettability versus roughness: multi-scales approach. Tribol Int. 2015;82:343–349. doi: 10.1016/j.triboint.2014.07.002
  • Chhatre SS, Choi W, Tuteja A, et al. Scale dependence of omniphobic mesh surfaces. Langmuir. 2010;26(6):4027–4035. doi: 10.1021/la903489r
  • Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater. 2005;4:277–288. doi: 10.1038/nmat1339
  • Cheng Y-T, Rodak DE. Is the lotus leaf superhydrophobic? Appl Phys Lett. 2005;86(14):144101. doi: 10.1063/1.1895487
  • Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today. 2011;6:155–175. doi: 10.1016/j.nantod.2011.02.002
  • Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci. 2009;54:137–178. doi: 10.1016/j.pmatsci.2008.07.003
  • Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci. 2007;172(6):1103–1112. doi: 10.1016/j.plantsci.2007.03.005
  • Bhushan B. Bioinspired structured surfaces. Langmuir. 2012;28(3):1698–1714. doi: 10.1021/la2043729
  • Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chem Soc Rev. 2010;39:3240–3255. doi: 10.1039/b917112f
  • Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci. 2011;56:1–108. doi: 10.1016/j.pmatsci.2010.04.003
  • Celia E, Darmanin T, de Givenchy ET, et al. Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci. 2013;402:1–18. doi: 10.1016/j.jcis.2013.03.041
  • Zhang M, Feng S, Wang L, et al. Lotus effect in wetting and self-cleaning. Biotribology. 2016;5:31–43. doi: 10.1016/j.biotri.2015.08.002
  • Guo Z, Liu W, Su BL. Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci. 2011;353(2):335–355. doi: 10.1016/j.jcis.2010.08.047
  • Feng BL, Li SH, Li YS, et al. Super-hydrophobic surfaces: from natural to artificial. Adv Mater. 2002;14(24):1857–1860. doi: 10.1002/adma.200290020
  • Ganesh VA, Raut HK, Nair AS, et al. A review on self-cleaning coatings. J Mater Chem. 2011;21(41):16304–16322. doi: 10.1039/c1jm12523k
  • Sun T, Feng L, Gao X, et al. Bioinspired surfaces with special wettability. 2005;38(8):644–652.
  • Herminghaus S. Roughness-induced non-wetting. Europhys Lett. 2000;52(2):165–170. doi: 10.1209/epl/i2000-00418-8
  • Cheng Y-T, Rodak DE. Is the lotus leaf superhydrophobic? Appl Phys Lett. 2005;86(14):144101. doi: 10.1063/1.1895487
  • Ragesh P, Anand Ganesh V, Nair SV, et al. A review on self-cleaning and multifunctional materials. J Mater Chem A. 2014;2:14773–14797. doi: 10.1039/C4TA02542C
  • Bixler GD, Theiss A, Bhushan B, et al. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci. 2014;419:114–133. doi: 10.1016/j.jcis.2013.12.019
  • Wu S-Z, Wu D, Yao J, et al. One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting. Langmuir. 2010;26(14):12012–12016. doi: 10.1021/la1015753
  • Bixler GD, Bhushan B. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Nanoscale. 2014;6:76–96. doi: 10.1039/C3NR04755E
  • Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir. 2007;23(6):3157–3161. doi: 10.1021/la062301d
  • Feng X-Q, Gao X, Wu Z, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir. 2007;23(9):4892–4896. doi: 10.1021/la063039b
  • Watson GS, Cribb BW, Watson JA. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Acta Biomater. 2010;6(10):4060–4064. doi: 10.1016/j.actbio.2010.04.016
  • Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci. 2009;54(2):137–178. doi: 10.1016/j.pmatsci.2008.07.003
  • Bixler GD, Bhushan B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter. 2012;8(44):11271–11284. doi: 10.1039/c2sm26655e
  • Kinoshita S, Yoshioka S, Kawagoe K. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc Biol Sci. 2002;269:1417–1421. doi: 10.1098/rspb.2002.2019
  • Yan YY, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci. 2011;169(2):80–105. doi: 10.1016/j.cis.2011.08.005
  • Gao X, Jiang L. Biophysics: water-repellent legs of water striders. Nature. 2004;432:36. doi: 10.1038/432036a
  • Yao X, Chen Q, Xu L, et al. Bioinspired ribbed nanoneedles with robust superhydrophobicity. Adv Funct Mater. 2010;20:656–662. doi: 10.1002/adfm.200901775
  • Liu J-L, Feng X-Q, Wang G, et al. Mechanisms of superhydrophobicity on hydrophilic substrates. J Phys Condens Matter. 2007;19(35):356002. doi: 10.1088/0953-8984/19/35/356002
  • Luo Y, Zhang D, Xu X, et al. Precise cutting microstructured superhydrophobic surface. Surf Eng. 2016;32(2):119–124. doi: 10.1179/1743294415Y.0000000102
  • Bhushan B, Koch K, Jung YC. Biomimetic hierarchical structure for self-cleaning. Appl Phys Lett. 2008;93(9):093101. doi: 10.1063/1.2976635
  • Tsujii K. Fractal materials and their functional properties. Polym J. 2008;40(9):785–799. doi: 10.1295/polymj.PJ2008053
  • Nosonovsky M, Bhushan B. Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 2007;7(9):2633–2637. doi: 10.1021/nl071023f
  • Ji S, Ramadhianti PA, Nguyen T-B, et al. Simple fabrication approach for superhydrophobic and superoleophobic Al surface. Microelectron Eng. 2013;111:404–408. doi: 10.1016/j.mee.2013.04.010
  • Bormashenko E, Stein T, Whyman G, et al. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir. 2006;22(24):9982–9985. doi: 10.1021/la061622m
  • Hensel R, Helbig R, Aland S, et al. Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater. 2013;5(2):e37, doi:10.1038/am.2012.66.
  • Grewal HS, Cho I-J, Yoon E-S. The role of bio-inspired hierarchical structures in wetting. Bioinspir Biomim. 2015;10(2):26009, doi:10.1088/1748-3190/10/2/026009.
  • Zhang B, Zhang X. Elucidating nonwetting of re-entrant surfaces with impinging droplets. Langmuir. 2015;31(34):9448–9457. doi: 10.1021/acs.langmuir.5b02283
  • Ho AYY, Van EL, Lim CT, et al. Lotus bioinspired superhydrophobic, self-cleaning surfaces from hierarchically assembled templates. J Polym Sci Part B Polym Phys. 2014;52(8):603–609. doi: 10.1002/polb.23461
  • Hsieh C-T, Wu F-L, Chen W-Y. Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Mater Chem Phys. 2010;121:14–21. doi: 10.1016/j.matchemphys.2009.12.031
  • Hsieh C-T, Chen J-M, Kuo R-R, et al. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles. Appl Surf Sci. 2005;240:318–326. doi: 10.1016/j.apsusc.2004.07.016
  • Ruthven DM. Principles of adsorption and adsorption process. 1984, New York, John Wiley & Sons.
  • Liu HH, Zhang HY, Li W. Thermodynamic analysis on wetting behavior of hierarchical structured super hydrophobic surfaces. Langmuir. 2011;27(10):6260–6267. doi: 10.1021/la200028x
  • Rabinovich YI, Adler JJ, Esayanur MS, et al. Capillary forces between surfaces with nanoscale roughness. Adv Colloid Interface Sci. 2002;96:213–230. doi: 10.1016/S0001-8686(01)00082-3
  • Extrand CW. Criteria for ultralyophobic surfaces. Langmuir. 2004;20(12):5013–5018. doi: 10.1021/la036481s
  • Extrand CW. Designing for optimum liquid repellency. Langmuir. 2006;22(4):1711–1714. doi: 10.1021/la052540l
  • Extrand CW. Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir. 2002;18(21):7991–7999. doi: 10.1021/la025769z
  • Nosonovsky M, Bhushan B. Hierarchical roughness makes superhydrophobic states stable. Microelectron Eng. 2007;84(3):382–386. doi: 10.1016/j.mee.2006.10.054
  • Nosonovsky M, Bhushan B. Multiscale dissipative mechanisms and hierarchical surfaces: friction, super- hydrophobicity, and biomimetics. 2008, Heidelberg, Germany, Springer.
  • Jung YC, Bhushan B. Mechanically durable carbon nanotube – composite hierarchical structures with super hydrophobicity, self-cleaning, and low-drag. ACS Nano. 2009;3(12):4155–4163. doi: 10.1021/nn901509r
  • Bhushan B, Jung YC, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A. 2009;367(1894):1631–1672. doi: 10.1098/rsta.2009.0014
  • Huang YF, Huang C, Zhong YL, et al. Preparing superhydrophobic surfaces with very low contact angle hysteresis. Surf Eng. 2013;29(8):633–636. doi: 10.1179/1743294412Y.0000000087
  • Milionis A, Bayer IS, Loth E. Recent advances in oil-repellent surfaces. Int Mater Rev. 2016;61(2):101–126. doi: 10.1080/09506608.2015.1116492
  • Tsujii K, Yamamoto T, Onda T, et al. Super oil-repellent surfaces. Angew Chem Int Ed Engl. 1997;36(9):1011–1012. doi: 10.1002/anie.199710111
  • Shibuichi S, Yamamoto T, Onda T, et al. Super water- and oil-repellent surfaces resulting from fractal structure. J Colloid Interface Sci. 1998;208(1):287–294. doi: 10.1006/jcis.1998.5813
  • Liu TL, Kim CJ. Turning a surface superrepellent even to completely wetting liquids. Science. 2014;346(6213):1096–1100. doi: 10.1126/science.1254787
  • Joly L, Biben T. Wetting and friction on superoleophobic surfaces. Soft Matter. 2009;5:2549–2557.
  • Barthwal S, Kim YS, Lim SH. Mechanically robust superamphiphobic aluminum surface with nanopore-embedded microtexture. Langmuir. 2013;29(38):11966–11974. doi: 10.1021/la402600h
  • Kontziampasis D, Boulousis G, Smyrnakis A, et al. Biomimetic, antireflective, superhydrophobic and oleophobic PMMA and PMMA-coated glass surfaces fabricated by plasma processing. Microelectron Eng. 2014;121:33–38. doi: 10.1016/j.mee.2014.02.027
  • Dong L, Liu Q, Liu Y. ‘Effect of surface area on the wettability of dual micro- and nanostructures fabricated by laser interference lithography’, Int. Conf. on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, 5–9 October 2015, DOI:10.1109/3M-NANO.2015.7425512.
  • Kwon MH, Shin HS, Chu CN. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition. Appl Surf Sci. 2014;288:222–228. doi: 10.1016/j.apsusc.2013.10.011
  • Wang D, Wang X, Liu X, et al. Engineering a titanium surface with controllable oleophobicity and switchable oil adhesion. J Phys Chem C. 2010;114(21):9938–9944. doi: 10.1021/jp1023185
  • Wang X, Cai X, Guo Q, et al. i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chem Commun. 2013;49:10064–10066. doi: 10.1039/c3cc45817b
  • Milionis A, Noyes C, Loth E, et al. Water-repellent approaches for 3-D printed internal passages. Mater Manuf Process. 2016;31(9):1162–1170. doi: 10.1080/10426914.2015.1059443
  • Lyons AM, Mullins BL, Barahman J, et al. Three-dimensional superhydrophobic structures printed using solid freeform fabrication tools. Int J Rapid Manufacturing. 2013;3:89–104. doi: 10.1504/IJRAPIDM.2013.053683
  • Im M, Im H, Lee J-H, et al. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter. 2010;6(7):1401–1404. doi: 10.1039/b925970h
  • Raimondo M, Blosi M, Caldarelli A, et al. Wetting behavior and remarkable durability of amphiphobic aluminum alloys surfaces in a wide range of environmental conditions. Chem Eng J. 2014;258:101–109. doi: 10.1016/j.cej.2014.07.076
  • Peng S, Yang X, Tian D, et al. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure. ACS Appl Mater Interfaces. 2014;6(17):15188–15197. doi: 10.1021/am503441x
  • Peng S, Deng W. A simple method to prepare superamphiphobic aluminum surface with excellent stability. Colloids and Surf A: Physicochem Eng Aspects. 2015;481:143–150. doi: 10.1016/j.colsurfa.2015.04.037
  • Choi HJ, Choo S, Shin JH, et al. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography. J Phys Chem C. 2013;117(2):24354–24359. doi: 10.1021/jp4070399
  • Ganesh VA, Dinachali SS, Nair AS, et al. Robust superamphiphobic film from electrospun TiO2 nanostructures. ACS Appl Mater Interfaces. 2013;5(5):1527–1532. doi: 10.1021/am302790d
  • Peng S, Bhushan B. Mechanically durable superoleophobic aluminum surfaces with microstep and nanoreticula hierarchical structure for self-cleaning and anti-smudge properties. J Colloid Interface Sci. 2016;461:273–284. doi: 10.1016/j.jcis.2015.09.027
  • Li H, Yu S, Han X, et al. Fabrication of superhydrophobic and oleophobic surface on zinc substrate by a simple method. Colloids and Surfaces A: Physicochem Eng Aspects. 2015;469:271–278. doi: 10.1016/j.colsurfa.2015.01.037
  • Patankar NA. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir. 2003;19:1249–1253. doi: 10.1021/la026612+
  • Lakshmi RV, Bera P, Anandan C, et al. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings. Appl Surf Sci. 2014;320:780–786. doi: 10.1016/j.apsusc.2014.09.150
  • Lakshmi RV, Bharathidasan T, Basu BJ. Superhydrophobic sol–gel nanocomposite coatings with enhanced hardness. Appl Surf Sci. 2011;257(24):10421–10426. doi: 10.1016/j.apsusc.2011.06.122
  • Yao X, Song Y, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater. 2011;23(6):719–734. doi: 10.1002/adma.201002689
  • Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent super hydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv Mater. 1999;11(16):1365–1368. doi: 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F
  • Wang Z, Lopez C, Hirsa A, et al. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. Appl Phys Lett. 2007;91(2):023105. doi: 10.1063/1.2756296
  • Bartolo D, Bouamrirene F, Verneuil É, et al. Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Lett. 2006;74(2):299–305. doi: 10.1209/epl/i2005-10522-3
  • Cavalli A, Boggild P, Okkels F. Parametric optimization of inverse trapezoid oleophobic surfaces. Langmuir. 2012;28(50):17545–17551. doi: 10.1021/la303853g
  • Im M, Im H, Lee JH, et al. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures. Langmuir. 2010;26(22):17389–17397. doi: 10.1021/la1031569
  • Im M, Im H, Kim D, et al. ‘Analysis of a superhydrophobic microlens array surface: as a microchannel wall for pressure drop reduction’, In Proceedings of Conference, MicroTAS 2009’, 13th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences, Chemical and Biological Microsystems Society, 162–164.
  • Lee SY, Rahmawan Y, Yang S. Transparent and superamphiphobic surfaces from mushroom-like micropillar arrays. ACS Appl Mater Interfaces. 2015;7(43):24197–24203. doi: 10.1021/acsami.5b07551
  • Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces. Langmuir. 1996;12(9):2125–2127. doi: 10.1021/la950418o
  • Hancock MJ, Sekeroglu K, Demirel MC. Bioinspired directional surfaces for adhesion, wetting, and transport. Adv Funct Mater. 2012;22(11):2223–2234. doi: 10.1002/adfm.201103017
  • Fischer G, Bigerelle M, Kubiak KJ, et al. Wetting of anisotropic sinusoidal surfaces – experimental and numerical study of directional spreading. Surf Topogr Metrol Prop. 2014;2(4):044003. doi: 10.1088/2051-672X/2/4/044003
  • Zhao H, Law KY. Directional self-cleaning superoleophobic surface. Langmuir. 2012;28(32):11812–11818. doi: 10.1021/la301894e
  • Groten J, Rühe J. Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces? Langmuir. 2013;29(11):3765–3772. doi: 10.1021/la304641q
  • Huovinen E, Hirvi J, Suvanto M, et al. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Langmuir. 2012;28(41):14747–14755. doi: 10.1021/la303358h
  • Jiang Y, Suvanto M, Pakkanen TA. Durable and mass producible polymer surface structures with different combinations of micro–micro hierarchy. J Micromech Microeng. 2016;26(1):015009. doi: 10.1088/0960-1317/26/1/015009
  • Ma J, Zhang XY, Wang DP. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Appl Phys Lett. 2014;104(17). doi:10.1063/1.4874275.
  • Cohen N, Dotan A, Dodiuk H, et al. Superhydrophobic coatings and their durability. Mater Manuf Process. 2016;31(9):1143–1155. doi: 10.1080/10426914.2015.1090600
  • Milionis A, Loth E, Bayer IS. Recent advances in the mechanical durability of superhydrophobic materials. Adv Colloid Interface Sci. 2016;229:57–79. doi: 10.1016/j.cis.2015.12.007
  • Verho T, Bower C, Andrew P, et al. Mechanically durable superhydrophobic surfaces. Adv Mater. 2011;23(5):673–678. doi: 10.1002/adma.201003129
  • Zhou H, Wang H, Niu H, et al. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater. 2013;23(13):1664–1670. doi: 10.1002/adfm.201202030
  • Ionov L, Synytska A. Self-healing superhydrophobic materials. Phys Chem Chem Phys. 2012;14(30):10497–10502. doi: 10.1039/c2cp41377a
  • Xue C-H, Bai X, Jia S. Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine. Sci Rep. 2016;6:27262. doi: 10.1038/srep27262
  • Wang FJ, Lei S, Ou JF, et al. Superhydrophobic surfaces with excellent mechanical durability and easy repairability. Appl Surf Sci. 2013;276:397–400. doi: 10.1016/j.apsusc.2013.03.104
  • Masuko M, Ikushima F, Aoki S, et al. Preliminary study on the tribology of an organic-molecule-coated touch panel display surface. Tribol Int. 2013;65:314–325. doi: 10.1016/j.triboint.2013.01.019
  • Essick GK, McGlone F, Dancer C, et al. Quantitative assessment of pleasant touch. Neurosci Biobehav Rev. 2010;34(2):192–203. doi: 10.1016/j.neubiorev.2009.02.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.