279
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication and drag reduction of the superoleophobic surface on a rotational gyroscope

, , , &
Pages 165-171 | Received 10 Oct 2016, Accepted 17 Dec 2016, Published online: 24 Jan 2017

References

  • An PL, Zheng YQ, Yan SB, et al. High-microsphere resonators for angular velocity sensing in gyroscopes. Appl Phys Lett. 2015;106:063504. doi: 10.1063/1.4908053
  • Han FT, Liu YF, Wang L, et al. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor. J Micromech Microeng. 2012;22:105032. doi: 10.1088/0960-1317/22/10/105032
  • Park S, Horowitz R, Tan CW. Dynamics and control of a MEMS angle measuring gyroscope. Sens Actuators A. 2008;144:56–63. doi: 10.1016/j.sna.2007.12.033
  • Challoner AD, Ge HH, Liu JY. Boeing disc resonator gyroscope, in proceedings of IEEE/ION PLANS2014: position, location and navigation symposium. IEEE, California. 2014: 504–514.
  • Liu K, Zhang WP, Liu W, et al. An innovative micro-diamagnetic levitation system with coils applied in micro-gyroscope. Microsyst Technol. 2010;16:431–439. doi: 10.1007/s00542-009-0935-x
  • Fan LS, Tai YC, Muller RS. IC-processed electrostatic micromotors. Sens Actuators. 1989;20:41–47. doi: 10.1016/0250-6874(89)87100-8
  • Cheng M, Zhang S, Dong H, et al. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability. ACS Appl Mater Interfaces. 2016;7:4275–4282. doi: 10.1021/am5085012
  • Zhang S, Ouyang X, Gao S, et al. Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir. 2014;31:587–593. doi: 10.1021/la504451k
  • Vizhi ME, Vanithakumari SC, George RP, et al. Superhydrophobic coating on modified 9Cr-1Mo ferritic steel using perfluoro octyl triethoxy silane. Surf Eng. 2016;32:139–146. doi: 10.1179/1743294415Y.0000000078
  • Cheng M, Song M, Dong H, et al. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings. Small. 2015;11:1665–1671. doi: 10.1002/smll.201402618
  • Zhu Y, Hu YM, Nie H-Y, et al. Superhydrophobicity via organophosphonic acid derivatised aluminum films. Surf Eng. 2016;32:114–118. doi: 10.1179/1743294415Y.0000000088
  • Yu HD, Zhang XR, Wan YL, et al. Superhydrophobic surface prepared by micromilling and grinding on aluminium alloy. Surf Eng. 2016;32:108–132. doi: 10.1179/1743294414Y.0000000405
  • Yao X, Song Y, Jiang L. Applications of bio-inspired special wettable surfaces. Adv Mater. 2011;23:719–734. doi: 10.1002/adma.201002689
  • Fukagata K, Kasagi N, Koumoutsakos P. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys Fluids. 2006;18:051703. doi: 10.1063/1.2205307
  • Beckford S, Langston N, Zou M. Fabrication of durable hydrophobic surfaces through surface texturing. App Surf Sci. 2011;257:5688–5693. doi: 10.1016/j.apsusc.2011.01.074
  • Chan ML, Yoxall B, Park H, et al. Design and characterization of MEMS micromotor supported on low friction liquid bearing. Sens Actuators, A. 2012;177:1–9. doi: 10.1016/j.sna.2011.08.003
  • Li H, Liu XW, Dong CC, et al. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro. J Magn Magn Mater. 2016;407:31–36. doi: 10.1016/j.jmmm.2016.01.047
  • Nakamura S. MEMS inertial sensor toward higher accuracy & multi-axis sensing. Sensors, 2005 IEEE. 2005: 939–942. doi: 10.1109/ICSENS.2005.1597855
  • Spikes HA. The half-wetted bearing. Part 1: extended Reynolds equation. Proc Inst Mech Eng. 2003;217:1–14. doi: 10.1243/135065003321164758
  • Spikes HA. The half-wetted bearing. Part 2: potential application in low load contacts. Proc Inst Mech Eng. 2003;217:15–26. doi: 10.1243/135065003321164776
  • Li L, Breedveld V, Hess DH. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition. ACS Appl Mater Interfaces. 2012;4:4549–4556. doi: 10.1021/am301666c
  • Su Y, Ji B, Zhang K, et al. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir. 2010;26:4984–4989. doi: 10.1021/la9036452
  • Bellanger H, Darmanin T, Givenchy E, et al. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem Rev. 2014;114:2694–2716. doi: 10.1021/cr400169m
  • Zhou XB, De Hosson JThM. Reactive wetting of liquid metals on ceramic substrates. Acta Mater. 1996;44:421–426. doi: 10.1016/1359-6454(95)00235-9
  • Nakae H, Inui R, Hirata Y, et al. Effects of surface roughness on wettability. Acta Mater. 1998;46:2313–2318. doi: 10.1016/S1359-6454(97)00387-X
  • Palasantzas G, De Hosson JThM. Wetting in rough surface. Acta Mater. 2001;49:3533–3538. doi: 10.1016/S1359-6454(01)00238-5
  • Skolski JZP, Römer GRBE, Obona JV, et al. Laser-induced periodic surface structures: fingerprints of light localization. Phys Rev B. 2012;85:075320. doi: 10.1103/PhysRevB.85.075320
  • Zhang HF, Yin L, Li L, et al. Wettability and drag reduction of a superhydrophobic aluminum surface. RSC Adv. 2016;6:14034–14041. doi: 10.1039/C5RA23842K
  • Ahmmed KMT, Kietzig A. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces. Soft Matter. 2016;12:4912–4922. doi: 10.1039/C6SM00436A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.