284
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Hydroxyapatite coating on C/C with graphene oxide interlayer

, , , , , & show all
Pages 801-808 | Received 17 Mar 2017, Accepted 14 May 2017, Published online: 10 Jun 2017

References

  • Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310:1135–1138. doi: 10.1126/science.1106587
  • Mansouri N, SamiraBagheri N. The influence of topography on tissue engineering perspective. Mater Sci Eng C Mater Biol Appl. 2016;61:906–921. doi: 10.1016/j.msec.2015.12.094
  • Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016;61:922–939. doi: 10.1016/j.msec.2015.12.087
  • Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–S101. doi: 10.1007/s005860100282
  • Andrukhov O, Huber R, Shi B, et al. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater. 2016;32:1374–1384. doi: 10.1016/j.dental.2016.08.217
  • Deng Y, Liu X, Xu A, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int J Nanomedicine. 2015;10:1425–1447.
  • Shahmoradi S, Yazdian F, Tabandeh F, et al. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells. Mater Sci Eng C Mater Biol Appl. 2017;73:300–309. doi: 10.1016/j.msec.2016.11.076
  • Guo SS, Zhu XY, Li M, et al. Parallel control over surface charge and wettability using polyelectrolyte architecture: effect on protein adsorption and cell adhesion. ACS Appl Mater Interfaces. 2016;8:30552–30563. doi: 10.1021/acsami.6b09481
  • Wang Z, Qing Q, Chen X, et al. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Appl Surf Sci. 2016;388:223–227. doi: 10.1016/j.apsusc.2016.01.187
  • Kunzler TP, Drobek T, Schuler M, et al. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007;28:2175–2182. doi: 10.1016/j.biomaterials.2007.01.019
  • Huang Q, Elkhooly TA, Liu X, et al. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids Surf B Biointerfaces. 2016;145:37–45. doi: 10.1016/j.colsurfb.2016.04.031
  • Rosa AL, Beloti MM, Van Noort R, et al. Surface topography of hydroxyapatite affects ROS17/2.8 cells response. Pesqui Odontol Bras. 2002;16:209–215. doi: 10.1590/S1517-74912002000300005
  • Rosa AL, Beloti MM, van Noort R. Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography. Dent Mater 2003;19:768–772. doi: 10.1016/S0109-5641(03)00024-1
  • Li J, He F, Ye J. Effect of the surface topographic modification on cytocompatibility of hardened calcium phosphate cement. Appl Surf Sci. 2013; 274:237–240.
  • Mikociak D, Blazewicz S, Michalowski J. Biological and mechanical properties of nanohydroxyapatite-containing carbon/carbon composites. Int J Appl Ceramic Technol. 2012;9:468–478. doi: 10.1111/j.1744-7402.2011.02643.x
  • Wang G, Yu S, Zhu S, et al. [Study on implant material of carbon/carbon composites]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010;27:1286–1291.
  • Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–2670. doi: 10.1016/j.biomaterials.2005.12.002
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13:94–117. doi: 10.1557/JMR.1998.0015
  • Hasniyati M, Zuhailawati H, Sivakumar R, et al. Cold spray deposition of hydroxyapatite powder onto magnesium substrates for biomaterial applications. Surf Eng. 2015;31:867–874. doi: 10.1179/1743294415Y.0000000068
  • Shi YY, Li M, Liu Q, et al. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med. 2016;27:S581.
  • Janković A, Eraković S, Mitrić M, et al. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J Alloys Compd. 2015;624:148–157. doi: 10.1016/j.jallcom.2014.11.078
  • Zeng Y, Pei X, Yang S, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf Coat Technol. 2016;286:72–79. doi: 10.1016/j.surfcoat.2015.12.013
  • Gao F, Xu C, Hu H, et al. Biomimetic synthesis and characterization of hydroxyapatite/graphene oxide hybrid coating on Mg alloy with enhanced corrosion resistance. Mater Lett. 2015;138:25–28. doi: 10.1016/j.matlet.2014.09.088
  • Zhang X, Yin J, Peng C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon. 2011;49:986–995. doi: 10.1016/j.carbon.2010.11.005
  • Wojtoniszak M, Chen X, Kalenczuk RJ, et al. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B Biointerfaces. 2012;89:79–85. doi: 10.1016/j.colsurfb.2011.08.026
  • Chang Y, Yang S-T, Liu J-H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200:201–210. doi: 10.1016/j.toxlet.2010.11.016
  • Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034
  • Subrahmanyam KS, Vivekchand SRC, Govindaraj A, et al. A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem. 2008;18:1517–1523. doi: 10.1039/b716536f
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017
  • Nevskaia DM, Martín-Aranda RM. Nitric acid-oxidized carbon for the preparation of esters under ultrasonic activation. Catal Lett. 2003;87:143–147. doi: 10.1023/A:1023487005083
  • Eigler S, Dotzer C, Hirsch A. Visualization of defect densities in reduced graphene oxide. Carbon. 2012;50:3666–3673. doi: 10.1016/j.carbon.2012.03.039
  • Kudin KN, Ozbas B, Schniepp HC, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y
  • Dimiev AM, Tour JM. Mechanism of graphene oxide formation. ACS Nano. 2014;8:3060–3068. doi: 10.1021/nn500606a
  • Aktuğ SL, Durdu S, Yalçın E, et al. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation. Mater Sci Eng C Mater Biol Appl. 2017;71:1020–1027. doi: 10.1016/j.msec.2016.11.012
  • Kulpetchdara K, Limpichaipanit A, Rujijanagul G, et al. Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel. Surf Coat Technol. 2016;306(Part A):181–186. doi: 10.1016/j.surfcoat.2016.05.069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.