541
Views
31
CrossRef citations to date
0
Altmetric
Research Articles

Novel photocatalytic coatings based on tin oxide semiconductor

, , &
Pages 216-226 | Received 05 Mar 2018, Accepted 14 May 2018, Published online: 14 Jun 2018

References

  • Bai YY, Lu Y, Liu JK. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite. J Hazard Mater. 2016;307:26–35. doi: 10.1016/j.jhazmat.2015.12.052
  • Podporska-Carroll J, Myles A, Quilty B, et al. Anti-bacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater. 2017;324:39–47. doi: 10.1016/j.jhazmat.2015.12.038
  • Lee H, Park YK, Kim SJ, et al. Tio2 photocatalyst film using circulating fluidised bed–chemical vapour deposition. Surf Eng. 2015;31:134–139. doi: 10.1179/1743294414Y.0000000350
  • Rojviroon T, Rojviroon O, Sirivithayapakorn S. Photocatalytic decolourisation of dyes using TiO2 thin film photocatalysts. Surf Eng. 2016;32:562–569. doi: 10.1179/1743294415Y.0000000096
  • Rojviroon T, Sirivithayapakorn S. Properties of TiO2 thin films prepared using sol–gel process. Surf Eng. 2013;29:77–80. doi: 10.1179/1743294412Y.0000000076
  • Sridhar S, Arunnellaiappan T, Rameshbabu N, et al. Solar photocatalytic activity of nitrogen doped TiO2 coating by micro-arc oxidation. Surf Eng. 2017;33:779–786. doi: 10.1080/02670844.2016.1259090
  • Ravichandran K, Sindhuja E, Uma R, et al. Photocatalytic efficacy of ZnO films – light intensity and thickness effects. Surf Eng. 2017;33:512–520. doi: 10.1080/02670844.2016.1270797
  • Calza P, Gionco C, Giletta M, et al. Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst. J Hazard Mater. 2017;323:471–477. doi: 10.1016/j.jhazmat.2016.03.093
  • Yang LY, Dong SY, Sun JH, et al. Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst. J Hazard Mater. 2010;179:438–443. doi: 10.1016/j.jhazmat.2010.03.023
  • Sun JH, Dong SY, Wang YK, et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J Hazard Mater. 2009;172:1520–1526. doi: 10.1016/j.jhazmat.2009.08.022
  • Momeni MM, Ghayeb Y, Mohammadi F. Fe2O3 nanotube films prepared by anodisation as visible light photocatalytic. Surf Eng. 2015;31:452–457. doi: 10.1179/1743294414Y.0000000425
  • Wang JC, Ren J, Yao HC, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. J Hazard Mater. 2016;311:11–19. doi: 10.1016/j.jhazmat.2016.02.055
  • Mishra M, Chun DM. α-Fe2O3 as a photocatalytic material: a review. Appl Catal A Gen. 2015;498:126–141. doi: 10.1016/j.apcata.2015.03.023
  • Townsend TK, Sabio EM, Browning ND, et al. Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ Sci. 2011;4:4270–4275. doi: 10.1039/c1ee02110a
  • Mohammed Harshulkhan S, Janaki K, Velraj G, et al. Effect of Ag doping on structural, optical and photocatalytic activity of tungsten oxide (WO3) nanoparticles. J Mater Sci Mater Electron. 2016;27:4744–4751. doi: 10.1007/s10854-016-4354-3
  • Zhu W, Liu J, Yu S, et al. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater. 2016;318:407–416. doi: 10.1016/j.jhazmat.2016.06.066
  • Aslam M, Ismail IMI, Chandrasekaran S, et al. Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. J Hazard Mater. 2014;276:120–128. doi: 10.1016/j.jhazmat.2014.05.022
  • Hayat K, Gondal MA, Khaled MM, et al. Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. J Hazard Mater. 2011;186:1226–1233. doi: 10.1016/j.jhazmat.2010.11.133
  • Bhattacharjee A, Ahmaruzzaman M. A novel and green process for the production of SnO2 quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. J Colloid Interface Sci. 2015;448:130–139. doi: 10.1016/j.jcis.2015.01.083
  • Chandran D, Nair LS, Balachandran S, et al. Structural, optical, photocatalytic, and antimicrobial activities of cobalt-doped tin oxide nanoparticles. J Solgel Sci Technol. 2015;76:582–591. doi: 10.1007/s10971-015-3808-z
  • Suganya M, Balu AR, Prabha D, et al. Pbs–SnO2 nanocomposite with enhanced magnetic, photocatalytic and antifungal properties. J Mater Sci Mater Electron. 2018;29:1065–1074. doi: 10.1007/s10854-017-8007-y
  • Kong XB, Li F, Qi ZN, et al. SnO2-based thin films with excellent photocatalytic performance. J Mater Sci Mater Electron. 2017;28:7660–7667. doi: 10.1007/s10854-017-6459-8
  • Zhang C, Chaudhary U, Das S, et al. Effect of porosity on photocatalytic activity of plasma-sprayed TiO2 coating. J Therm Spray Technol. 2013;22:1193–1200. doi: 10.1007/s11666-013-9964-1
  • Niu F, Chen D, Qin L, et al. Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances. Sol Energy Mater Sol Cells. 2015;143:386–396. doi: 10.1016/j.solmat.2015.07.008
  • Bagheri M, Mahjoub AR, Mehri B. Enhanced photocatalytic degradation of congo red by solvothermally synthesized CuInSe2–ZnO nanocomposites. RSC Adv. 2014;4:21757–21764. doi: 10.1039/c4ra01753f
  • Asilturk M, Sayilkan F, Arpac E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation. J Photochem Photobiol A Chem. 2009;203:64–71. doi: 10.1016/j.jphotochem.2008.12.021
  • Ola O, Maroto-Valer MM. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C Photochem Rev. 2015;24:16–42. doi: 10.1016/j.jphotochemrev.2015.06.001
  • He W, Jia H, Wamer WG, et al. Predicting and identifying reactive oxygen species and electrons for photocatalytic metal sulfide micro–nano structures. J Catal. 2014;320:97–105. doi: 10.1016/j.jcat.2014.10.004
  • Sobana N, Swaminathan M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol Energy Mat Sol Cells. 2007;91:727–734. doi: 10.1016/j.solmat.2006.12.013
  • Vijay M, Selvarajan V, Sreekumar KP, et al. Ananthapadmanabhan, characterization and visible light photocatalytic properties of nanocrystalline TiO2 synthesized by reactive plasma processing. Sol Energy Mater Sol Cells. 2009;93:1540–1549. doi: 10.1016/j.solmat.2009.04.004
  • Pan S, Li G. Recent progress in p-type doping and optical properties of SnO2 nanostructures for optoelectronic device applications. Recent Pat Nanotechnol. 2011;5:138–161. doi: 10.2174/187221011795909161
  • Seo YJ, Kim GW, Sung CH, et al. Characterization of transparent and conductive electrodes of Nb-doped SnO2 thin film by pulsed laser deposition. Curr Appl Phys. 2011;11:S310–S313. doi: 10.1016/j.cap.2010.11.070
  • Li C, Lv M, Zuo J, et al. Sno2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design. Sensors. 2015;15:3789–3800. doi: 10.3390/s150203789
  • Das S, Jayaraman V. Sno2: a comprehensive review on structures and gas sensors. Prog Mater Sci. 2014;66:112–255. doi: 10.1016/j.pmatsci.2014.06.003
  • Read J, Foster D, Wolfenstine J, et al. SnO2-carbon composites for lithium-ion battery anodes. J Power Sources. 2001;96:277–281. doi: 10.1016/S0378-7753(00)00569-3
  • Guo Q, Zheng Z, Gao H, et al. Sno2/graphene composite as highly reversible anode materials for lithium ion batteries. J Power Sources. 2013;240:149–154. doi: 10.1016/j.jpowsour.2013.03.116
  • Li Z, Zhou Y, Sun R, et al. Nanostructured SnO2 photoanode-based dye-sensitized solar cells. Chin Sci Bull. 2014;59:2122–2134. doi: 10.1007/s11434-013-0079-3
  • Birkel A, Lee YG, Koll D, et al. Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ Sci. 2012;5:5392–5400. doi: 10.1039/C1EE02115J
  • Dinh NN, Bernard MC, Goff AHL, et al. Photoelectrochemical solar cells based on SnO2 nanocrystalline films. C R Chim. 2006;9:676–683. doi: 10.1016/j.crci.2005.02.042
  • Davar F, Salavati-Niasari M, Fereshteh Z. Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J Alloys Compd. 2010;496:638–643. doi: 10.1016/j.jallcom.2010.02.152
  • Aziz M, Abbas SS, Baharom WRW. Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater Lett. 2013;91:31–34. doi: 10.1016/j.matlet.2012.09.079
  • Patil GE, Kajale DD, Gaikwad VB, et al. Preparation and characterization of SnO2 nanoparticles by hydrothermal route. Int Nano Lett. 2012;2:46–51. doi: 10.1186/2228-5326-2-17
  • Rashad MM, Ibrahim IA, Osama I, et al. Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells. Bull Mater Sci. 2014;37:903–909. doi: 10.1007/s12034-014-0024-3
  • Zhao Y, Zhang Y, Li J, et al. Solvothermal synthesis of nonmetals-modified SnO2 nanoparticles with high visible-light-activated photocatalytic activity in the reduction of aqueous Cr(VI). Sep Purif Technol. 2014;129:90–95. doi: 10.1016/j.seppur.2014.04.005
  • Lee H, Park SH, Kim SJ, et al. Synthesis of tin and tin oxide nanoparticles using liquid phase plasma in an aqueous solution. Microelectronic Eng. 2014;126:153–157. doi: 10.1016/j.mee.2014.07.014
  • Roozban N, Abbasi S, Ghazizadeh M. The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles. J Mater Sci Mater Electron. 2017;28:7343–7352. doi: 10.1007/s10854-017-6421-9
  • Abbasi S, Hasanpour M. The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. J Mater Sci Mater Electron. 2017;28:1307–1314. doi: 10.1007/s10854-016-5660-5
  • Abbasi S, Ekrami Kakhki MS, Tahari M. Modeling and predicting the photodecomposition of methylene blue via ZnO–SnO2 hybrids using design of experiments (DOE). J Mater Sci Mater Electron. 2017;28:15306–15312. doi: 10.1007/s10854-017-7414-4
  • Viet PV, Thi CM, Hieu LV. The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J Nanomater. 2016;2016:1–8.
  • Roy A, Arbuj S, Waghadkar Y, et al. Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity. J Solid State Electrochem. 2017;21:9–17. doi: 10.1007/s10008-016-3328-y
  • Kima SP, Choib MY, Choi HC. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull. 2016;74:85–89. doi: 10.1016/j.materresbull.2015.10.024
  • Zhang M, An T, Hu X, et al. Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Appl Catal A Gen. 2004;260:215–222. doi: 10.1016/j.apcata.2003.10.025
  • Wang C, Xu BQ, Wang X, et al. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J Solid State Chem. 2005;178:3500–3506. doi: 10.1016/j.jssc.2005.09.005
  • Kima SP, Choib MY, Choia HC. Characterization and photocatalytic performance of SnO2–CNT nanocomposites. Appl Surf Sci. 2015;357:302–308. doi: 10.1016/j.apsusc.2015.09.044
  • Dlugosz M, Zmudzki P, Kwiecien A, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J Hazard Mater. 2015;298:146–153. doi: 10.1016/j.jhazmat.2015.05.016
  • Park SS, Mackenzie JD. Sol-gel-derived tin oxide thin films. Thin Solid Films. 1995;258:268–273. doi: 10.1016/0040-6090(94)06404-0
  • Martinez DYT, Perez RC, Delgado GT, et al. Undoped tin oxide thin films obtained by the sol gel technique, starting from a simple precursor solution. J Mater Sci Mater Electron. 2011;22:684–689. doi: 10.1007/s10854-010-0196-6
  • Dai CM, Su CS, Chuu DS. Growth of highly oriented tin oxide thin films by laser evaporation deposition. Appl Phys Lett. 1990;57:1879–1881. doi: 10.1063/1.103998
  • Jadsadapattarakul D, Euvananont C, Thanachayanont C, et al. Tin oxide thin films deposited by ultrasonic spray pyrolysis. Ceram Int. 2008;34:1051–1054. doi: 10.1016/j.ceramint.2007.09.096
  • Patil GE, Kajale DD, Gaikwad VB, et al. Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Nanotechnol. 2012;2012:275872:1–275872:5. doi: 10.5402/2012/275872
  • Vadivel S, Rajarajan G. Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J Mater Sci Mater Electron. 2015;26:3155–3162. doi: 10.1007/s10854-015-2811-z
  • Vadivel S, Rajarajan G. Effect of W doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J Mater Sci Mater Electron. 2015;26:7127–7133. doi: 10.1007/s10854-015-3335-2
  • Cao Y, Zhang X, Yang W, et al. A bicomponent TiO2/SnO2 particulate film for photocatalysis. Chem Mater. 2000;12:3445–3448. doi: 10.1021/cm0004432
  • Cai ZQ, Shen QH, Gao JW, et al. Low-temperature preparation of TiO2/SnO2 composite film and its photocatalytic activity. J Inorg Mater. 2007;22:733–736.
  • Bozorgtabar M, Rahimipour M, Salehi M. Novel photocatalytic TiO2 coatings produced by HVOF thermal spraying process. Mater Lett. 2010;64:1173–1175. doi: 10.1016/j.matlet.2010.02.042
  • Bozorgtabar M, Rahimipour M, Salehi M, et al. Structure and photocatalytic activity of TiO2 coatings deposited by atmospheric plasma spraying. Surf Coat Technol. 2011;205:S229–S231. doi: 10.1016/j.surfcoat.2011.03.045
  • Park WJ, Jo W, Kim DY, et al. Enhanced densification of pure SnO2 by spark plasma sintering. J Mater Sci. 2005;40:3825–3827. doi: 10.1007/s10853-005-2560-0
  • Park SJ, Hirota K, Yamamura H. Densitication of nonadditive SnO2 by hot isostatic pressing. Ceram Int. 1984;10:116–121. doi: 10.1016/0272-8842(84)90013-0
  • Xue M, Chandra S, Mostaghimi J, et al. A stochastic coating model to predict the microstructure of plasma sprayed zirconia coatings. Model Simul Mater Sci Eng. 2008;16:65006–65024. doi: 10.1088/0965-0393/16/6/065006
  • Lin H, Huang CP, Li W, et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B: Environ. 2006;68:1–11. doi: 10.1016/j.apcatb.2006.07.018
  • Alagdal IA, West AR. Oxygen non-stoichiometry, conductivity and gas sensor response of SnO2 pellets. J Mater Chem A. 2015;3:23213–23219. doi: 10.1039/C5TA05818J
  • Sun M, Zhao Q, Du C, et al. Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv. 2015;5:22740–22752. doi: 10.1039/C4RA14187C
  • Cai Y, Coyle TW, Azimi G, et al. Superhydrophobic ceramic coatings by solution precursor plasma spray. Sci Rep. 2016;6:24670–24678. doi: 10.1038/srep24670
  • Harish KN, Bhojya Naik HS, Prashanth kumar PN, et al. Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight. Catal Sci Technol. 2012;2:1033–1039. doi: 10.1039/c2cy00503d
  • Bharathi S, Nataraj D, Mangalaraj D, et al. Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB). J Phys D Appl Phys. 2010;43:15501–15509. doi: 10.1088/0022-3727/43/1/015501
  • Navidpour AH, Kalantari Y, Salehi M, et al. Plasma-sprayed photocatalytic zinc oxide coatings. J Therm Spray Technol. 2017;26:717–727. doi: 10.1007/s11666-017-0541-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.