182
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Thermal stability investigation of the SS/MO/Al2O3 spectrally selective solar absorber coatings

, , ORCID Icon, , &
Pages 565-572 | Received 04 Jun 2018, Accepted 13 Sep 2018, Published online: 31 Oct 2018

References

  • Wang X, Gao J, Hu H, et al. High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity. Nano Energy. 2017;37:232–241. doi: 10.1016/j.nanoen.2017.05.036
  • Shah AA, Gupta MC. Spectral selective surfaces for concentrated solar power receivers by laser sintering of tungsten micro and nano particles. Sol Energy Mater Sol Cells. 2013;117:489–493. doi: 10.1016/j.solmat.2013.07.013
  • Gao X-H, Guo H-X, Zhou T-H, et al. Optical properties and failure analysis of ZrC-ZrOx ceramic based spectrally selective solar absorbers deposited at a high substrate temperature. Sol Energy Mater Sol Cells. 2018;176:93–99. doi: 10.1016/j.solmat.2017.11.018
  • Gao X-H, Theiss W, Shen Y-Q, et al. Optical simulation, corrosion behavior and long term thermal stability of TiC-based spectrally selective solar absorbers. Sol Energy Mater Sol Cells. 2017;167:150–156. doi: 10.1016/j.solmat.2017.04.015
  • Gao X-H, Guo Z-M, Geng Q-F, et al. Enhanced absorptance of surface-textured tungsten thin film for solar absorber. Surf Eng. 2016;32:840–845. doi: 10.1080/02670844.2016.1187466
  • Du XK, Wang C, Wang TM, et al. Microstructure and spectral selectivity of Mo-Al2O3 solar selective absorbing coatings after annealing. Thin Solid Films. 2008;516:3971–3977. doi: 10.1016/j.tsf.2008.04.077
  • Vien TK, Sella C, Lafait J, et al. Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600°C. Thin Solid Films. 1985;126:17–22. doi: 10.1016/0040-6090(85)90169-5
  • Sathiaraj TS, Thangaraj R, AlSharbaty H, et al. Optical properties of selectively absorbing r.f. sputtered Ni-Al2O3 composite films. Thin Solid Films. 1991;195:33–42. doi: 10.1016/0040-6090(91)90256-W
  • Zhang QC, Shen YG. High performance W–AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering. Solar Energy Mater Solar Cells. 2004;81:25–37. doi: 10.1016/j.solmat.2003.08.021
  • Céspedes E, Wirz M, Sánchez-García JA, et al. Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications. Sol Energy Mater Sol Cells. 2014;122:217–225. doi: 10.1016/j.solmat.2013.12.005
  • Barshilia HC, Kumar P, Rajam KS, et al. Structure and optical properties of Ag-Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Solar Energy Mater Solar Cells. 2011;95:1707–1715. doi: 10.1016/j.solmat.2011.01.034
  • Xue YF, Wang C, Wang WW, et al. Spectral properties and thermal stability of solar selective absorbing AlNi-Al2O3 cermet coating. Sol Energy. 2013;96:113–118. doi: 10.1016/j.solener.2013.07.012
  • Zhang QC, Yin Y, Mills DR. High efficiency Mo-Al2O3 cermet selective surfaces for high-temperature application. Sol Energy Mater Sol Cells. 1996;40:43–53. doi: 10.1016/0927-0248(95)00078-X
  • Kuckelkorn T, Graf W, Hildebrandt C, et al. Radiation selective absorber pipe, absorber pipe with said coating, and method of making same. US Patent. 2008;0121225A: 1.
  • Barshilia HC, Selvakumar N, Rajam KS, et al. Thermal stability of TiAlN/TiAlON/Si3N4 tandem absorbers prepared by reactive direct current magnetron sputtering. J Vac Sci Technol A. 2007;25(2):383–390. doi: 10.1116/1.2699425
  • Barshilia HC, Selvakumar N, Rajam KS, et al. Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering. Sol Energy Mater Sol Cells. 2008;92:1425–1433. doi: 10.1016/j.solmat.2008.06.004
  • Barshilia HC, Selvakumar N, Rajam KS, et al. Spectrally selective TiAlN/CrAlON/Si3N4 tandem absorber for high temperature solar applications. Sol Energy Mater Sol Cells. 2008;92:469–477.
  • Selvakumar N, Rajam KS, Biswas A, et al. Optical simulation and fabrication of HfMoN/HfON/Al2O3 spectrally selective coating. Sol Energy Mater Sol Cells. 2015;140:328–334. doi: 10.1016/j.solmat.2015.04.031
  • Gao X-H, Guo Z-M, Geng Q-F, et al. Microstructure and optical properties of SS/Mo/Al2O3 spectrally selective solar absorber coating. J Mater Eng Perform. 2017;26:161–167. doi: 10.1007/s11665-016-2445-1
  • Cheng JS, Wang C, Wang WW, et al. Improvement of thermal stability in the solar selective absorbing Mo-Al2O3 coating. Sol Energy Mater Sol Cells. 2013;109:204–208. doi: 10.1016/j.solmat.2012.11.010
  • Du X, Wang C, Wang T, et al. Microstructure and spectral selectivity of Mo-Al2O3 solar selective absorbing coatings after annealing. Thin Solid Films. 2008;516:3971–3977. doi: 10.1016/j.tsf.2008.04.077
  • Selvakumar N, Rajaguru K, Gouda GK, et al. AlMoN based spectrally selective coating with improved thermal stability for high temperature solar thermal applications. Solar Energy. 2015;119:114–121. doi: 10.1016/j.solener.2015.06.047
  • Barshilia HC, Selvakumar N, Vignesh G, et al. Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings. Sol Energy Mater Sol Cells. 2009;93:315–323. doi: 10.1016/j.solmat.2008.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.