332
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of vanadium oxide thin films deposited from commercial and solution combustion synthesised powders

ORCID Icon, ORCID Icon, &
Pages 41-48 | Received 16 Jun 2018, Accepted 08 Nov 2018, Published online: 22 Nov 2018

References

  • Ingole RS, Lokhande BJ. Effect of pyrolysis temperature on structural, morphological and electrochemical properties of vanadium oxide thin films. J Anal Appl Pyrolysis [Internet]. 2016;120:434–440. doi: 10.1016/j.jaap.2016.06.015
  • Kaid MA. Characterization of electrochromic vanadium pentoxide thin films prepared by spray pyrolysis. Egypt J Solids. 2006;29:273–291.
  • Augustyn V. Tuning the interlayer of transition metal oxides for electrochemical energy storage. J Mater Res. 2017;32:2–15. doi: 10.1557/jmr.2016.337
  • Ashrit P. Photochromic thin films and devices. Transition Met Oxide Thin Film Based Chromogenics Devices. 2017: 13–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780081017470000052. doi: 10.1016/B978-0-08-101747-0.00002-7
  • Su H, Jaffer S, Yu H. Transition metal oxides for sodium-ion batteries. Energy Storage Mater. 2016;5:116–131. doi: 10.1016/j.ensm.2016.06.005
  • Ashrit P. Introduction to transition metal oxides and thin films. Transition Met Oxide Thin Film Based Chromogenics Devices. 2017;73:151. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780081017470000027.
  • Kim TW, Park SJ. Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor. J Colloid Interface Sci. 2017;486:287–295. doi: 10.1016/j.jcis.2016.10.007
  • Nishiyama K, Sasano J, Yokoyama S, et al. Electrochemical preparation of tungsten oxide hydrate films with controlled bandgap energy. Thin Solid Films. 2017;625:29–34. doi: 10.1016/j.tsf.2017.01.044
  • Isber S, Majdalani E, Tabbal M, et al. Study of manganese oxide thin films grown by pulsed laser deposition. Thin Solid Films. 2009;517:1592–1595. doi: 10.1016/j.tsf.2008.09.097
  • Wu H, Lian K. Vanadium oxide electrode synthesized by electroless deposition for electrochemical capacitors. J Power Sources. 2014;271:534–537. doi: 10.1016/j.jpowsour.2014.08.034
  • Vasanth Raj D, Ponpandian N, Mangalaraj D, et al. Effect of annealing and electrochemical properties of sol-gel dip coated nanocrystalline V2O5 thin films. Mater Sci Semicond Process. 2013;16:256–262. doi: 10.1016/j.mssp.2012.11.001
  • Margoni MM, Mathuri S, Ramamurthi K, et al. Sprayed vanadium pentoxide thin films: Influence of substrate temperature and role of HNO3 on the structural, optical, morphological and electrical properties. Appl Surf Sci. 2017;418:280–290. doi: 10.1016/j.apsusc.2017.02.039
  • Patil CE, Tarwal NL, Shinde PS, et al. Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties. J Phys D Appl Phys. 2009;42:1–7.
  • Jagadeesh A, Rattan TM, Muralikrishna M, et al. Instant one step synthesis of crystalline nano V2O5 by solution combustion method showing enhanced negative temperature coefficient of resistance. Mater Lett. 2014;121:133–136. doi: 10.1016/j.matlet.2014.01.080
  • Mjejri I, Sediri F. Synthesis and electrochemical performance of hierarchical nano-vanadium oxide. J Colloid Interface Sci. 2016;480:191–197. doi: 10.1016/j.jcis.2016.07.027
  • Liu Y, Guan D, Gao G, et al. Enhanced electrochemical performance of electrospun V2O5 nanotubes as cathodes for lithium ion batteries. J Alloys Compd. 2017;726:922–929. doi: 10.1016/j.jallcom.2017.07.214
  • Ramasami AK, Reddy M V, Nithyadharseni P, et al. Gel-combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries. J Alloys Compd. 2017;695:850–858. doi: 10.1016/j.jallcom.2016.10.143
  • Dou Y, Liang X, Gao G, et al. Template-free synthesis of porous V2O5 yolk-shell microspheres as cathode materials for lithium ion batteries. J Alloys Compd. 2018;735:109–116. doi: 10.1016/j.jallcom.2017.10.264
  • Giannetta HMR, Calaza C, Lamas DG, et al. Electrical transport properties of V2O5 thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature. Thin Solid Films. 2015;589:730–734. doi: 10.1016/j.tsf.2015.06.048
  • Zhang SB, Zuo DW, Lu WZ. Influence of film thickness on structural and optical-switching properties of vanadium pentoxide films. Surf Eng. 2017;33:292–298. doi: 10.1080/02670844.2016.1252897
  • Ashrafi MA, Ranjbar M, Kalhori H, et al. Pulsed laser deposition of Mo-V-O thin films for chromogenic applications. Thin Solid Films. 2017;621:220–228. doi: 10.1016/j.tsf.2016.11.041
  • Kang M, Chu M, Kim SW, et al. Optical and electrical properties of V2O5 nanorod films grown using an electron beam. Thin Solid Films. 2013;547:198–201. doi: 10.1016/j.tsf.2013.03.060
  • Sahana MB, Sudakar C, Thapa C, et al. Electrochemical properties of V2O5 thin films deposited by spin coating. Mater Sci Eng B Solid-State Mater Adv Technol. 2007;143:42–50. doi: 10.1016/j.mseb.2007.08.002
  • Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci. 2008;12:44–50. doi: 10.1016/j.cossms.2008.12.002
  • Aruna ST. Solution combustion synthesis in concise encyclopedia of self-propagating high-temperature synthesis. In: Borovinskaya IP, Maximov YM, Gromov AA, Mukasyan AS, Levashov EA, Rogachev AS, editors. Cambridge: Elsevier; 2017. ISBN: 978-0-12-804173-4.
  • Yilmaz E. 2017. Thin film coating of vanadium oxides produced by solution combustion synthesis its optical and electrochemical characterization. Istanbul [MSc thesis]. Istanbul Technical University, Graduate School of Science, Engineering and Technology.
  • Patil KC, Hegde MS, Rattan T, Aruna ST. Chemistry of nanocrystalline oxide materials, combustion synthesis, properties and applications. Denver: World Scientific Publishing; 2008. ISBN-13 978-981-279-314-0.
  • Najdoski M, Koleva V, Stojkovikj S, et al. Electrochromic thin films of sodium intercalated vanadium(V) oxide xerogels: chemical bath deposition and characterization. Surf Coatings Technol. 2015;277:308–317. doi: 10.1016/j.surfcoat.2015.07.041
  • Zhao L, Miao L, Tanemura S, et al. A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process. Thin Solid Films. 2013;543:157–161. doi: 10.1016/j.tsf.2012.11.154
  • Manning TD, Parkin IP, Clark RJH, et al. Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides. J Mater Chem. 2002;12:2936–2939. doi: 10.1039/b205427m
  • Mola GT, Arbab EAA, Taleatu BA, et al. Growth and characterization of V2O5 thin film on conductive electrode. J Microsc. 2017;265:214–221. doi: 10.1111/jmi.12490
  • Almoabadi A, Alsawafta M, Badilescu S, et al. Subzero temperature Dip-coating of Sol-Gel vanadium pentoxide: effect of the deposition temperature on the film structure, morphology, and electrochromic properties. J Nanomater. 2016.
  • Novkovski N, Najdoski M. Light absorption mechanisms in sodium vanadium bronze thin films in electrochromic cells. Mater Chem Phys. 2014;148:759–763. doi: 10.1016/j.matchemphys.2014.08.045
  • Denayer J, Aubry P, Bister G, et al. Improved coloration contrast and electrochromic efficiency of tungsten oxide films thanks to a surfactant-assisted ultrasonic spray pyrolysis process. Sol Energy Mater Sol Cells. 2014;130:623–628. doi: 10.1016/j.solmat.2014.07.038
  • Chen Y, Bi Z, Li X, et al. High-Coloration efficiency electrochromic device based on novel Porous TiO2@prussian blue Core-Shell Nanostructures. Electrochim Acta. 2017;224:534–540. doi: 10.1016/j.electacta.2016.12.044
  • Cogan SF, Nguyen NM, Perrotti SJ, et al. Optical properties of electrochromic vanadium pentoxide. J Appl Phys. 1989;66:1333–1337. doi: 10.1063/1.344432
  • Madhuri KV, Uthanna S, Naidu BS, et al. Optical and electrical properties of (V2O5)1-x- (MoO3)x thin films. J Indian Inst Sci. 2001;81:653–658.
  • Ramana C V, Smith RJ, Hussain OM, et al. Correlation between growth conditions, microstructure, and optical properties in pulsed-laser-deposited V2O5 thin films. Chem Mater. 2005;17:1213–1219. doi: 10.1021/cm048507m
  • Yao J, Li Y, Massé RC, et al. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 2018;11:205–259. doi: 10.1016/j.ensm.2017.10.014
  • Wu QH, Thißen A, Jaegermann W. Photoelectron spectroscopic study of Na intercalation into V2O5 thin films. Solid State Ionics. 2004;167:155–163. doi: 10.1016/j.ssi.2003.12.016
  • Sun D, Jin G, Wang H, et al. Aqueous rechargeable lithium batteries using NaV 6 O 15 nanoflakes as high performance anodes. J Mater Chem A. 2014;2:12999–13005. Available from: http://xlink.rsc.org/?DOI=C4TA01675 K. doi: 10.1039/C4TA01675K
  • Benmoussa M, Outzourhit A, Jourdani R, et al. Structural, optical and electrochromic properties of sol–gel V2O5 thin films. Act Pass Elec Comp. 2003;26(4):245–256. doi: 10.1080/0882751031000116223
  • Hu F, Jiang W, Dong Y, et al. Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries. RSC Adv. 2017;7(47):29481–29488. doi: 10.1039/C7RA04388K

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.