537
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Boriding behaviour of titanium alloys with different crystalline structures

&
Pages 611-617 | Received 10 Sep 2018, Accepted 20 Nov 2018, Published online: 06 Dec 2018

References

  • Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mat. 2003;4:445–454. doi: 10.1016/j.stam.2003.09.002
  • Lütjering G, Williams JC. Titanium. Berlin (GE): Springer; 2007.
  • Lomholt TC, Pantleon K, Somers MAJ. In-vivo degradation mechanism of Ti-6Al-4 V hip joints. Mater Sci Eng C. 2011;31:120–127. doi: 10.1016/j.msec.2010.08.007
  • Niinomi M, Hattori T, Morikawa K, et al. Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans. 2002;43:2970–2977. doi: 10.2320/matertrans.43.2970
  • Godley R, Starosvetsky D, Gotman I. Corrosion behaviour of a low modulus β-Ti-45Nb alloy for use in medical implants. J Mater Sci-Mater M. 2006;17:63–67. doi: 10.1007/s10856-006-6330-6
  • Long M, Rack HJ. Friction and surface behaviour of selected titanium alloys during reciprocating-sliding motion. Wear. 2001;249:157–167. doi: 10.1016/S0043-1648(01)00517-8
  • Kara G, Pürçek G, Atasoy Y, et al. Microstructure and tribological properties of Ti borided by electron beam evaporation technique. J Balk Tribol Assoc. 2015;21:24–37.
  • Kara G, Pürçek G, Yanar H. Improvement of wear behaviour of titanium by boriding. Ind Lubr Tribol. 2017;69(1):65–70. doi: 10.1108/ILT-11-2015-0174
  • Atar E, Kayali ES, Cimenoglu H. Characteristics and wear performance of borided Ti6Al4 V alloy. Surf Coat Technol. 2008;202:4583–4590. doi: 10.1016/j.surfcoat.2008.03.011
  • Tikekar NM, Chandran KSR, Sanders T. Novel double-layered titanium boride coatings on titanium: kinetics of boron diffusion and coating morphologies. TMS Lett. 2005;2(3):87–98.
  • Tsipas SA, Vazquez-Alcazar MR, Navas EMR, et al. Boride coatings obtained by pack cementation deposited on powder metallurgy and wrought Ti and Ti–6Al–4 V. Surf Coat Technol. 2010;205:2340–2347. doi: 10.1016/j.surfcoat.2010.09.026
  • Kara G, Pürçek G. Growth kinetics and mechanical characterization of boride layers formed on β-type Ti-45Nb alloy. Surf Coat Technol. 2018;352:201–212. doi: 10.1016/j.surfcoat.2018.07.085
  • Higashi I, Takahashi T, Atoda T. Crystal-growth of borides and carbides of transition-metals from molten aluminium solutions. J Cryst Growth. 1976;33:207–211. doi: 10.1016/0022-0248(76)90044-0
  • Binnewies M, Mike E. Thermochemical data of elements and compounds. Weinheim (GE): Wiley-VCH Verlag; 2002.
  • Murray JL, Liao PK, Spear KE. Bulletin of alloy phase diagrams: the B-Ti (boron-titanium) system. New York (NY): Springer; 1986.
  • Khaliq A, Rhamdhani MA, Brooks G, et al. Thermodynamic analysis of Ti, Zr, V and Cr impurities in aluminium melt. TMS Light Met. 2011;2:751–756.
  • Massalski TB. Binary alloy phase diagrams. Ohio: Materials Park ASM International; 1990.
  • Sanchez JM, de Fontaine D. Model for anomalous self-diffusion in group-iv transition metals. Phys Rev Lett. 1975;35:227–230. doi: 10.1103/PhysRevLett.35.227
  • Skotnikova MA. A crystallographic model of vacancy-supersaturation of the high-temperature b.c.c. modification of titanium. Metal Sci Heat Treat. 1998;40:112–124. doi: 10.1007/BF02467470
  • Taazim NT, Jauhari I, Miyashita Y, et al. Development and kinetics of TiB2 layers on the surface of titanium alloy by superplastic boronizing. Metall Mater Trans A. 2016;47:2217–2222. doi: 10.1007/s11661-016-3359-0
  • Mehrer H. Diffusion in solids fundamentals, methods, materials, diffusion-controlled processes. Berlin (GE): Springer-Verlag; 2007.
  • Fan Z, Guo ZX, Cantor B. The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs. Composites Part; 28A:131–140.
  • Aich S, Chandran KSR. Tib whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties. Metall Mater Trans A. 2002;33:3489–3498. doi: 10.1007/s11661-002-0336-6
  • Keihn FG, Keplin EI. High temperature thermal expansion of certain group IV and group V diborides. J Am Ceram Soc. 1967;50:81–86. doi: 10.1111/j.1151-2916.1967.tb15044.x
  • Todai M, Fukuda T, Kakeshita T. Relation between negative temperature coefficient in electrical resistivity and athermal ω phase in Ti–xNb (26 ≤ x ≤ 29 at%). J Alloys Compd. 2013;577:431–434. doi: 10.1016/j.jallcom.2012.02.026
  • Panigrahi A, Sulkowski B, Waitz T, et al. Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation. J Mech Behav Biomater. 2016;62:93–100. doi: 10.1016/j.jmbbm.2016.04.042
  • Popela T, Vojtěch D. Characterization of pack-borided last-generation TiAl intermetallics. Surf Coat Technol. 2012;209:90–96. doi: 10.1016/j.surfcoat.2012.08.034
  • Nakajima H, Ogasawara K, Yamaguchiand S, et al. Diffusion of chromium in α-titanium and its alloys. Mater Trans JIM. 1990;31(4):249–254. doi: 10.2320/matertrans1989.31.249
  • Henry W. Oxygen diffusion through titanium and other hcp metals [Phd. Thesis]. Illinois: University of Illinois; 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.