208
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Comparative study on structure and properties of ZnO thin films prepared by RF magnetron sputtering using pure metallic Zn target and ZnO ceramic target

&
Pages 49-54 | Received 18 Jun 2018, Accepted 29 Nov 2018, Published online: 10 Dec 2018

References

  • Chaabouni F, Khalfallah B, Abaab M, et al. Doping Ga effect on ZnO radio frequency sputtered films from a powder target. Thin Solid Films. 2016;617:95–102. doi: 10.1016/j.tsf.2015.12.047
  • Gu R, Tang K, Gu S, et al. Substrate polarity and surface pretreatment temperature dependence of ZnO homoepitaxy. Appl Surf Sci. 2016;361:33–40. doi: 10.1016/j.apsusc.2015.11.131
  • Nakamura T, Nagata T, Hayakawa R, et al. Crystallographic polarity effect of ZnO on thin film growth of pentacene. Jph J Appl Phys. 2017;56:04CJ03. doi: 10.7567/JJAP.56.04CJ03
  • Zúñiga-Pérez J, Consonni V, Lymperakis L, et al. Polarity in GaN and ZnO: theory, measurement, growth, and devices. Appl Phys Rev. 2016;3:041303. doi: 10.1063/1.4963919
  • Makino H, Shimizu H. Influence of crystallographic polarity on the opto-electrical properties of polycrystalline ZnO thin films deposited by magnetron sputtering. Appl Surf Sci. 2018;439:839–844. doi: 10.1016/j.apsusc.2018.01.107
  • Dong J, Han D, Li H, et al. Effect of Al doping on performance of ZnO thin film transistors. Appl Surf Sci. 2018;433:836–839. doi: 10.1016/j.apsusc.2017.10.071
  • Kim C, Park J, Kim T. Effect of photochemical hydrogen doping on the electrical properties of ZnO thin-film transistors. J Alloy Compd. 2018;732:300–305. doi: 10.1016/j.jallcom.2017.10.217
  • Kaushik V, Mukherjee C, Ganguli T, et al. Electrical and optical characteristics of aerosol assisted CVD grown ZnO based thin film diode and transistor. J Alloy Compd. 2017;696:727–735. doi: 10.1016/j.jallcom.2016.11.267
  • Bang K, Son G, Son M, et al. Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors. J Alloy Compd. 2017;725:291–301. doi: 10.1016/j.jallcom.2017.07.173
  • Taheri M, Abdizadeh H, Golobostanfard M. Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application. J Alloy Compd. 2017;725:291–301. doi: 10.1016/j.jallcom.2017.07.173
  • Sarma B, Sarma BK. Role of residual stress and texture of ZnO nanocrystals on electrooptical properties of ZnO/Ag/ZnO multilayer transparent conductors. J Alloy Compd. 2018;734:210–219. doi: 10.1016/j.jallcom.2017.11.028
  • Chen S, Wang J, Zhang Z, et al. Aerosol assisted chemical vapour deposition of conformal ZnO compact layers for efficient electron transport in perovskite solar cells. Mater Lett. 2018;217:251–254. doi: 10.1016/j.matlet.2018.01.090
  • Tsai C, Lai J, Feng S, et al. Characterizations and growth of textured well-faceted ZnO films by low-pressure chemical vapor deposition on ITO glass substrates. Superlattice Microst. 2017;111:1073–1081. doi: 10.1016/j.spmi.2017.08.015
  • Vakulov Z, Zamburg E, Khakhulin D, et al. Thermal stability of ZnO thin films fabricated by pulsed laser deposition. Mat Sci Semicon Proc. 2017;66:21–25. doi: 10.1016/j.mssp.2017.03.006
  • Krämer A, Engel S, Sangiorgi N, et al. Zno thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD). Appl Surf Sci. 2017;399:282–287. doi: 10.1016/j.apsusc.2016.12.046
  • Lin M, Huang J, Ku C, et al. High mobility transparent conductive Al-doped ZnO thin films by atomic layer deposition. J Alloy Compd. 2017;727:565–571. doi: 10.1016/j.jallcom.2017.08.207
  • Jeong J, Yun H, Yang S, et al. Investigation of atomic-layer-deposited Al-doped ZnO film for AZO/ZnO double-stacked active layer thin-film transistor application. Thin Solid Films. 2017;638:89–95. doi: 10.1016/j.tsf.2017.07.034
  • Cicek K, Karacali T, Efeoglu H, et al. Deposition of ZnO thin films by RF&DC magnetron sputtering on silicon and porous-silicon substrates for pyroelectric applications. Sensor Actuat A. 2017;260:24–28. doi: 10.1016/j.sna.2017.04.007
  • Misra P, Ganeshan V, Agrawal N. Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering. J Alloy Compd. 2017;725:60–68. doi: 10.1016/j.jallcom.2017.07.121
  • Kafrouni W, Vigne S, Ge J, et al. Second harmony generation behavior in fully epitaxial m-plane (10–10) non-polar ZnO thin film grown on MgO (100) substrate by radio frequency sputtering. Vacuum. 2017;139:64–66. doi: 10.1016/j.vacuum.2017.02.005
  • Miandal K, Lam M, Shain F, et al. Rf power dependence of ZnO thin film deposited by RF powered magnetron sputtering system. J Adv Res Mater Sci. 2016;20(1):6–13.
  • Kim N, Shin N, Hwang C. Optical and electrical characteristics of Ga-Zn-O thin films prepared by RF magnetron co-sputtering system. Superlattice Microst. 2017;101:68–75. doi: 10.1016/j.spmi.2016.11.028
  • Singh A, Chaudhary S, Pandya D. High conductivity indium doped ZnO films by metal target reactive co-sputtering. Acta Mater. 2016;111:1–9. doi: 10.1016/j.actamat.2016.03.012
  • You Q, Cai H, Gao K, et al. Highly transparent and conductive Al-doped ZnO films synthesized by pulsed laser co-ablation of Zn and Al targets assisted by oxygen plasma. J Alloy Compd. 2015;626:415–420. doi: 10.1016/j.jallcom.2014.11.153
  • Zhang W, Gan J, Li L, et al. Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration. Mat Sci Semicon Proc. 2018;74:147–153. doi: 10.1016/j.mssp.2017.10.028
  • Wu F, Fang L, Pan Y, et al. Effect of substrate temperature on the structural, electrical and optical properties of ZnO:Ga thin films prepared by RF magnetron sputtering. Physica E. 2010;43:228–234. doi: 10.1016/j.physe.2010.07.007
  • Daniel G, Justinvictor V, Nair P, et al. Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering. Physica B. 2010;405:1782–1786. doi: 10.1016/j.physb.2010.01.039
  • Liu C, Xu Z, Zhang Y, et al. Effect of annealing temperature on properties of ZnO:Al thin films prepared by pulsed DC reactive magnetron sputtering. Mater Lett. 2015;139:279–283. doi: 10.1016/j.matlet.2014.10.106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.