343
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and wear properties of multi ceramics reinforced metal-matrix composite coatings on Ti–6Al–4V alloy fabricated by laser surface alloying

, , &
Pages 683-691 | Received 14 Nov 2018, Accepted 10 Jan 2019, Published online: 06 Feb 2019

References

  • Huang C, Zhang YZ, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate. Mater Design. 2012;41:338–343. doi: 10.1016/j.matdes.2012.04.049
  • Kumar S, Chattopadhyay K, Mahobia GS, et al. Hot corrosion behaviour of Ti-6Al-4V modified by ultrasonic shot peening. Mater Design. 2016;110:196–206. doi: 10.1016/j.matdes.2016.07.133
  • Li X, Hu GZ, Tian J, et al. Wear resistance enhancement of Ti-6Al-4V alloy by applying Zr-modified silicide coatings. J Mater Eng Perform. 2018;27:1073–1082. doi: 10.1007/s11665-018-3203-3
  • Li JN, Chen CZ, Squartini T, et al. A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy. Appl Surf Sci. 2010;257:1550–1555. doi: 10.1016/j.apsusc.2010.08.094
  • Morita T, Asakura K, Kagaya C. Effect of combination treatment on wear resistance and strength of Ti-6Al-4V alloy. Mater Sci Eng A. 2014;618:438–446. doi: 10.1016/j.msea.2014.09.042
  • Jagdheesh R, Mudali UK, Nath AK. Laser processed Cr-SiC coatings on AISI type 316L stainless steel. Surf Eng. 2007;23:93–98. doi: 10.1179/174329407X169421
  • Jagdheesh R, Sastikumar D, Kamachi Mudali UK, et al. Laser processed metal-ceramic coatings on AISI type 316l stainless steel. Surf Eng. 2004;20:360–366. doi: 10.1179/026708404225014997
  • Zhang D, Yang YL, Ju Y. Thermodynamics and phase constituents of laser induced in-situ-fabrication of TiB2 ceramic coating on Ti-6Al-4V. Appl Mech Mater. 2013;275–277:2304–2307. doi: 10.4028/www.scientific.net/AMM.275-277.2304
  • Saleh AF, Abboud JH, Benyounis KY. Surface carburizing of Ti-6Al-4V alloy by laser melting. Opt Laser Eng. 2010;48:257–267. doi: 10.1016/j.optlaseng.2009.11.001
  • Dai JJ, Chen CZ, Li SY, et al. Microstructure and properties of laser surface carburized titanium and titanium alloys. Adv Mater Res. 2014;936:1086. doi: 10.4028/www.scientific.net/AMR.936.1086
  • Majumdar JD. Laser gas alloying of Ti-6Al-4V. Phys Procedia. 2011;12:472–477. doi: 10.1016/j.phpro.2011.03.058
  • Yilbas BS, Sunar M, Gasem Z, et al. Laser gas assisted nitriding and TiN coating of Ti-6Al-4 V alloy: Experimental and numerical investigation of mechanical properties. J Mater Process Tech. 2009;209:1199–1208. doi: 10.1016/j.jmatprotec.2008.03.024
  • Tijo D, Masanta M. In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: part-II. Mechanical performance. Surf Coat Tech. 2018;344:579–589. doi: 10.1016/j.surfcoat.2018.03.083
  • Weng F, Yu HJ, Chen CZ, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V. Mater Design. 2015;80:174–181. doi: 10.1016/j.matdes.2015.05.005
  • Majumdar JD, Manna I, Kumar A, et al. Direct laser cladding of Co on Ti-6Al-4V with a compositionally graded interface. Adv Mater Sci Eng. 2009;209:2237–2243.
  • Weng F, Yu HJ, Chen CZ, et al. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition. Adv Manuf Process. 2016;31:1461–1467. doi: 10.1080/10426914.2016.1140199
  • Liu SS, Wang YH, Zhang WP. Microstructure and wear resistance of laser clad cobalt-based composite coating on TA15 surface. Rare Metal Mat Eng. 2014;43:1041–1046. doi: 10.1016/S1875-5372(14)60097-7
  • Bowden D, Krysiak Y, Palatinus L, et al. A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications. Nat Commun. 2018;9:1374–1383. doi: 10.1038/s41467-018-03875-9
  • Ocken H. The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt- and nickel-base alloys. Surf Coat Tech. 1995;76–77:456–461. doi: 10.1016/0257-8972(95)02573-1
  • Wu HL, Wang WX, Cui ZQ, et al. Study on Ni60 coatings on TA2 alloy substrate by laser cladding. Hot Working Technol. 2010;39:140–143.
  • He XH, Xu XJ, Ge XL, et al. F101 Ni-based coating containing La2O3 by laser cladding on TC4 titanium alloy. Rare Metal Mat Eng. 2017;46:1074–1079.
  • Guo C, Zhou JS, Zhao JR, et al. Microstructure and tribological properties of a HfB2-containing Ni-based composite coating produced on a pure Ti substrate by laser cladding. Tribol Lett. 2011;44:187–200. doi: 10.1007/s11249-011-9837-z
  • Guo C, Zhou JS, Zhao JR, et al. Effect of ZrB on the microstructure and wear resistance of Ni-based composite coating produced on pure Ti by laser cladding. Tribol Lett. 2010;54:80–86.
  • Meng QW, Geng L, Zheng ZZ. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY. Mater Sci Forum. 2005;475–479:905–908. doi: 10.4028/www.scientific.net/MSF.475-479.905
  • Ni DR, Geng L, Zhang J, et al. Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system. Scripta Mater. 2006;55:429–432. doi: 10.1016/j.scriptamat.2006.05.024
  • Tunckan O, Yurdakul H, Turan S. Identification and quantification of reaction phases at Si3N4-Ti interfaces by using analytical transmission electron microscopy techniques. Ceram Int. 2013;39:1087–1095. doi: 10.1016/j.ceramint.2012.07.031
  • Zhao Y, Wang LJ, Zhang GJ, et al. Preparation and microstructure of a ZrB2-SiC composite fabricated by the spark plasma sintering-reactive synthesis (SPS-RS) method. J Am Ceram Soc. 2010;90:4040–4042.
  • Yang YL, Yao WM, Liu JB, et al. Thermodynamical and technological studies on in-situ self-generating Ti(C,N) ceramic coating via laser cladding. J Northeastern Univ. 2010;31:1165–1169.
  • Hua C. Mechanical alloying of Ti-Al-Si-Nb system powders and the microstructure characteristics after spark plasma sintering. Rare Metal Mat Eng. 2007;36:1173–1177.
  • Dunlap RA, Mchenry ME, Ohandley RC, et al. High-symmetry transition-metal sites in Ti56Ni(28-x)Fe(x)Si16 quasicrystals. J Appl Phys. 1988;64:5956–5958. doi: 10.1063/1.342162
  • Sun YN, Cheng KN, Sun WL, et al. Effect of Ti addition on microstructural evolution of Ni3Si laser clad coatings. Nonferr Metal Eng. 2015;5:11–14.
  • Liu F, Mao Y, Lin X, et al. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding. Opt Laser Eng. 2016;83:140–147. doi: 10.1016/j.optlastec.2016.04.005
  • Zheng W. The investigation on the microstructure and wear mechanism of in-situ synthesis Ti(C,N)-TiB2 particulates reinforce metal-matrix composite coating. Harbin: Heilongjiang Institute of Science and Technology; 2011. Chinese.
  • Sichkar SM, Antonov VN, Antropov VP. Comparative study of the electronic structure, phonon spectra and electron-phonon interaction of ZrB2 and TiB2. Low Temp Phys. 2013;39:595–601. doi: 10.1063/1.4816117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.