394
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Transmittance and self-cleaning polymethylsiloxane coating with superhydrophobic surfaces

, , &
Pages 574-582 | Received 06 Nov 2018, Accepted 25 Mar 2019, Published online: 22 Apr 2019

References

  • Xue C, Zhang Z, Zhang J, et al. Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane. J Mater Chem A. 2014;2(36):15001–15007. doi: 10.1039/C4TA02396J
  • He G, Lu S, Xu W, et al. Fabrication of durable superhydrophobic electrodeposited tin surfaces with tremella-like structure on copper substrate. Surf Coat Technol. 2017;309:590–599. doi: 10.1016/j.surfcoat.2016.12.014
  • Zou X, Tao C, Yang K, et al. Rational design and fabrication of highly transparent, flexible, and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles. Appl Surf Sci. 2018;440:700–711. doi: 10.1016/j.apsusc.2018.01.159
  • Peng C, Chang K, Weng C, et al. UV-curable nanocasting technique to prepare bio-mimetic super-hydrophobic non-fluorinated polymer surfaces for advanced anticorrosive coatings. Polym Chem. 2013;4:926–932. doi: 10.1039/C2PY20613G
  • Li H, Yu S. A robust superhydrophobic surface and origins of its self-cleaning properties. Appl Surf Sci. 2017;420:336–345. doi: 10.1016/j.apsusc.2017.05.131
  • Xie W, Wang F, Xu C, et al. A superhydrophobic and self-cleaning photoluminescent protein film with high weatherability. Chem Eng J. 2017;326:436–442. doi: 10.1016/j.cej.2017.05.170
  • Satapathy M, Varshney P, Nanda D, et al. Fabrication of durable porous and non-porous superhydrophobic LLDPE/SiO2 nanoparticles coatings with excellent self-cleaning property. Surf Coat Technol. 2018;341:31–39. doi: 10.1016/j.surfcoat.2017.07.025
  • Chen N, Pan Q. Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS Nano. 2013;7(8):6875–6883. doi: 10.1021/nn4020533
  • Yang W, Li J, Zhou P, et al. Superhydrophobic copper coating: switchable wettability, on-demand oil-water separation, and antifouling. Chem Eng J. 2017;327:849–854. doi: 10.1016/j.cej.2017.06.159
  • Ivanova EP, Hasan J, Webb HK, et al. Bactericidal activity of black silicon. Nat Commun. 2013;4(4):2838. doi: 10.1038/ncomms3838
  • Ellinas K, Tserepi A, Gogolides E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Adv Colloid Interface. 2017;250:132–157. doi: 10.1016/j.cis.2017.09.003
  • Yildirim A, Khudiyev T, Daglar B, et al. Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids. ACS Appl Mater Int. 2013;5(3):853–860. doi: 10.1021/am3024417
  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202(1):1–8. doi: 10.1007/s004250050096
  • Neinhuis C, Barthlott W. Characterization and distribution of water-repellent self-cleaning plant surfaces. Ann Bot-London. 1997;79(6):667–677. doi: 10.1006/anbo.1997.0400
  • Feng L, Zhang Y, Xi J, et al. Petal effect: a superhydrophobic state with high adhesive force. Langmuir. 2008;24(8):4114–4119. doi: 10.1021/la703821h
  • Bixler GD, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 2013;5(17):7685–7710. doi: 10.1039/c3nr01710a
  • Gao X, Jiang L. Biophysics: water-repellent legs of water striders. Nature. 2004;432(7013):36. doi: 10.1038/432036a
  • Tian P, Guo Z. Bioinspired silica-based superhydrophobic materials. Appl Surf Sci. 2017;426:1–18. doi: 10.1016/j.apsusc.2017.07.134
  • Ye C, Li M, Hu J, et al. Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective “cool roof”. Energy Environ Sci. 2011;4:3364–3367. doi: 10.1039/c0ee00686f
  • Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 2007;172(6):1103–1112. doi: 10.1016/j.plantsci.2007.03.005
  • Young T. An Essay on the cohesion of fluids. Philos Trans R Soc London. 1805;95:65–87. doi: 10.1098/rstl.1805.0005
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–994. doi: 10.1021/ie50320a024
  • Lin CT, Lin KL. Contact angle of 63Sn–37Pb and Pb-free solder on Cu plating. Appl Surf Sci. 2003;214(1-4):243–258. doi: 10.1016/S0169-4332(03)00342-8
  • Cassie ABD. Wettability of porous surface. Trans Faraday Soc. 1944;40:546–551. doi: 10.1039/tf9444000546
  • Whyman G, Bormashenko E, Stein T. The rigorous derivation of Young, Cassie–baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem Phys Lett. 2008;450(4-6):355–359. doi: 10.1016/j.cplett.2007.11.033
  • Kozbial A, Trouba C, Liu H, et al. Characterize the intrinsic water wettability of graphite with contact angle measurement: effect of defects on the static and dynamic contact angles. Langmuir. 2017;33(4):959–967. doi: 10.1021/acs.langmuir.6b04193
  • Lai Y, Huang J, Cui Z, et al. Recent Advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small. 2016;12(16):2203–2224. doi: 10.1002/smll.201501837
  • Yu C, Zhang P, Wang J, et al. Superwettability of gas bubbles and Its application: from bioinspiration to advanced materials. Adv Mater. 2017;29:1703053. doi: 10.1002/adma.201703053
  • Yuan Y, Duan Y, Zuo Z, et al. Novel, stable and durable superhydrophobic film on glass prepared by RF magnetron sputtering. Mater Lett. 2017;199:97–100. doi: 10.1016/j.matlet.2017.04.067
  • Si Y, Fu Q, Wang X, et al. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of Oil/water emulsions. Acs Nano. 2015;9(4):3791–3799. doi: 10.1021/nn506633b
  • Zhang L, Xue CH, Cao M, et al. Highly transparent fluorine-free superhydrophobic silica nanotube coatings. Chem Eng J. 2017;320:244–252. doi: 10.1016/j.cej.2017.03.048
  • Kim JH, Mirzaei A, Woo KH, et al. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching. Appl Surf Sci. 2018;439:598–604. doi: 10.1016/j.apsusc.2017.12.211
  • Cho SW, Kim JH, Lee HM, et al. Superhydrophobic Si surfaces having microscale rod structures prepared in a plasma etching system. Surf Coat Tech. 2016;306:82–86. doi: 10.1016/j.surfcoat.2016.05.009
  • Sung YH, Kim YD, Choi HJ, et al. Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films. Appl Surf Sci. 2015;349:169–173. doi: 10.1016/j.apsusc.2015.04.141
  • Prakash SS, Brinker CJ, Hurd AJ, et al. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature. 1995;375(6530):431–431. doi: 10.1038/375431b0
  • Yildirim A, Budunoglu H, Yaman M, et al. Template free preparation of nanoporous organically modified silica thin films on flexible substrates. Jour Mater Chem. 2011;21(38):14830–14837. doi: 10.1039/c1jm12188j
  • Sabry RS, Al-Mosawi MI. Novel approach to fabricate a stable superhydrophobic polycarbonate. Surf Eng. 2018;34:151–157. doi: 10.1080/02670844.2016.1270620
  • Tuvshindorj U, Yildirim A, Ozturk FE, et al. Robust cassie state of wetting in transparent superhydrophobic coatings. ACS Appl Mater. 2014;6(12):9680–9688. doi: 10.1021/am502117a
  • Viechineski FN, Kubaski ET, Schmidt S, et al. Preparation of transparent hydrophobic polymeric films spray-deposited on substrates. Surf Eng. 2018;34(2):121–127. doi: 10.1080/02670844.2016.1209623
  • Budunoglu H, Yildirim A, Guler MO, et al. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl Mater. 2011;3(2):539–545. doi: 10.1021/am101116b
  • Luo G, Jin Z, Dong Y, et al. Preparation and performance enhancements of wear-resistant, transparent PU/SiO2 superhydrophobic coating. Surf Eng. 2016;34(2):1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.