490
Views
46
CrossRef citations to date
0
Altmetric
Research Articles

Frictional performance evaluation of sliding surfaces lubricated by zinc-oxide nano-additives

, ORCID Icon, , &
Pages 144-157 | Received 02 Jan 2019, Accepted 13 May 2019, Published online: 05 Jun 2019

References

  • Ali MKA, Xianjun H. Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnol Rev. 2015;4:347–358. doi: 10.1515/ntrev-2015-0031
  • Katafuchi T. Diesel engine oil composition. U.S. Patent No. 6,159,911. 2000 Dec 12.
  • Seymour BT, Wright RAE, Parrott AC, et al. Poly(alkyl methacrylate) brush-grafted silica nanoparticles as oil lubricant additives: effects of alkyl pendant groups on oil dispersibility, stability, and lubrication property. ACS Appl Mater Interfaces. 2017;9:25038–25048. doi: 10.1021/acsami.7b06714
  • Ali MKA, Fuming P, Younus HA, et al. Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Appl Energy. 2018;211:461–478. doi: 10.1016/j.apenergy.2017.11.013
  • Wu L, Zhang Y, Yang G, et al. Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv. 2016;6:69836–69844. doi: 10.1039/C6RA10042B
  • Aldana PU. Tungsten disulfide nanoparticles as lubricant additives for the automotive industry [PhD dissertation]. Université de Lyon; 2016.
  • Bhaumik S, Pathak S. Analysis of anti-wear properties of CuO nanoparticles as friction modifiers in mineral oil (460cSt viscosity) using pin-on-disk tribometer. Tribol Ind. 2015;37:196–203.
  • Ali MKA, Xianjun H, Abdelkareem MA, et al. Friction and wear reduction mechanisms of the reciprocating contact interfaces using nanolubricant under different loads and speeds. ASME J Tribol. 2018;140(5):051606. doi: 10.1115/1.4039720
  • Ali MKA, Xianjun H, Mai L, et al. Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear. 2016;364–365:270–281. doi: 10.1016/j.wear.2016.08.005
  • Sgroi MF, Asti M, Gili F, et al. Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction. Tribol Int. 2017;105:317–325. doi: 10.1016/j.triboint.2016.10.013
  • Ali MKA, Xianjun H, Mai L, et al. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol Int. 2016;103:540–554. doi: 10.1016/j.triboint.2016.08.011
  • Aldana PU, Vacher B, Le MT, et al. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime. Tribol Lett. 2014;56:249–258. doi: 10.1007/s11249-014-0405-1
  • Jianhua Q, Yu Z, Lingling W, et al. Study on lubrication properties of modified nano ZnO in base oil. China Pet Process Petrochem Technol. 2011;13:14–18.
  • Gara L, Zou Q. Friction and wear characteristics of oil-based ZnO nanofluids. Tribol Trans. 2013;56:236–244. doi: 10.1080/10402004.2012.740148
  • Hsien WLY. Towards green lubrication in machining. Singapore: Springer; 2015.
  • Battez AH, Rico JF, Arias AN, et al. The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear. 2006;261:256–263. doi: 10.1016/j.wear.2005.10.001
  • Stachowiak GW, Batchelor AW. Adhesion and adhesive wear. Boston: Engineering Tribology, Butterworth-Heinemann, ABD; 2001; p. 533–553.
  • Ali MKA, Makrahy MM, Xianjun H. Role of the friction layer formed on the brake lining surface in friction stabilization for automotive brakes. Surf Topogr Metrol Prop. 2019;7:015026. doi: 10.1088/2051-672X/ab0ea1
  • Hwang B, Lee S, Ahn J. Effect of oxides on wear resistance and surface roughness of ferrous coated layers fabricated by atmospheric plasma spraying. Mater Sci Eng A. 2002;335:268–280. doi: 10.1016/S0921-5093(01)01937-2
  • Ali MKA, Xianjun H. M50 matrix sintered with nanoscale solid lubricants shows enhanced self-lubricating properties under dry sliding at diferent temperatures. Tribol Lett. 2019. doi: 10.1007/s11249-019-1183-6
  • Cellard A, Garnier V, Fantozzi G, et al. Wear resistance of chromium oxide nanostructured coatings. Ceram Int. 2009;35:913–916. doi: 10.1016/j.ceramint.2008.02.022
  • Boshui C, Kecheng G, Jianhua F, et al. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant. Appl Surf Sci. 2015;353:326–332. doi: 10.1016/j.apsusc.2015.06.107
  • Prasad S, Zabinski J. Tribological behavior of nanocrystalline zinc oxide films. Wear. 1997;203:498–506. doi: 10.1016/S0043-1648(96)07448-0
  • Dhoke SK, Khanna AS, Sinha TJM. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog Org Coat. 2009;64:371–382. doi: 10.1016/j.porgcoat.2008.07.023
  • Yang X, Zhang C, Li A, et al. Red fluorescent ZnO nanoparticle grafted with polyglycerol and conjugated RGD peptide as drug delivery vehicles for efficient target cancer therapy. Mater Sci Eng C. 2019;95:104–113. doi: 10.1016/j.msec.2018.10.066
  • Derjaguin B, Churaev N, Muller V. The Derjaguin—Landau—Verwey—Overbeek (DLVO) theory of stability of lyophobic colloids. Surf Forces. 1987: 293–310. doi: 10.1007/978-1-4757-6639-4_8
  • ASTM Standard G181-11, Standard test method for conducting friction tests of piston ring and cylinder liner materials under lubricated conditions. 03.02 (2004).
  • Baker CE, Theodossiades S, Rahnejat H, et al. Influence of in-plane dynamics of thin compression rings on friction in internal combustion engines. J Eng Gas Turbines Power. 2012;134:092801. doi: 10.1115/1.4006690
  • Ali MKA, Xianjun H, Abdelkareem MA. et al. Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribol Int. 2018;124:209–229.
  • Hamrock BJ, Dowson D. Ball bearing lubrication: the elastohydrodynamics of elliptical contacts; New York, Wiley-Interscience; 1981.
  • Menezes PL, Ingole SP, Nosonovsky M., et al. Tribology for scientists and engineers. New York: Springer; 2013.
  • Truhan JJ, Qu J, Blau PJ. A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribol Int. 2005;38:211–218. doi: 10.1016/j.triboint.2004.08.003
  • Li W, Zhu J, Qi J. Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. J Fuel Chem Technol. 2007;35:176–180. doi: 10.1016/S1872-5813(07)60016-4
  • Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:014304. doi: 10.1063/1.3155999
  • Ali MKA, Xianjun H, Turkson RF, et al. An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proc Inst Mech Eng Part K J Multi-body Dyn. 2016;230:329–349.
  • Ali MKA, Xianjun H, Elagouz A, et al. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. J Nanopart Res. 2016;18:377. doi: 10.1007/s11051-016-3679-4
  • Ali MKA, Xianjun H, Turkson RF, et al. Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives. RSC Adv. 2016;6:77913–77924. doi: 10.1039/C6RA10543B
  • Verma DK, Kumar BK, Rastogi RB. Zinc oxide-and magnesium-doped zinc oxide-decorated nanocomposites of reduced graphene oxide as friction and wear modifiers. ACS Appl Mater Interfaces. 2018;11:2418–2430. doi: 10.1021/acsami.8b20103
  • Chen Z, Li L, Yao H, et al. Improved mechanical and tribological performance of bismaleimide composites with green synthesis of graphene/kapok-like ZnO. Polym Test. 2018;68:77–86. doi: 10.1016/j.polymertesting.2018.03.049
  • Morozov IG, Belousova O, Ortega D, et al. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. J Alloy Compd. 2015;633:237–245. doi: 10.1016/j.jallcom.2015.01.285

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.