651
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films

, , , , , & show all
Pages 78-85 | Received 13 Sep 2018, Accepted 23 Apr 2019, Published online: 26 Jun 2019

References

  • Feng X, Zhang J, et al. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater Lett. 2018;210:84–87. doi: 10.1016/j.matlet.2017.08.129
  • Huo W, Liu X, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films. Appl Surf Sci. 2018;439:222–225. doi: 10.1016/j.apsusc.2018.01.050
  • Chen W-J, Liu T-Y, et al. Ni-Cr-Mn-Y-Nb resistive thin film prepared by co-sputtering. Mater Chem Phys. 2018;210:327–335. doi: 10.1016/j.matchemphys.2017.08.050
  • Tüten N, Canadinc D, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti 6Al 4V substrates. Intermetallics. 2019;105:99–106. doi: 10.1016/j.intermet.2018.11.015
  • Yeh JW, Chen SK, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Dou D, Li XC, et al. Coatings of FeAlCoCuNiV high entropy alloy. Surf Eng. 2016;32:766–769. doi: 10.1080/02670844.2016.1148380
  • Chen W, Tang QH, Wang H. Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy. Mater Sci Tech. 2018;34:1309–1315. doi: 10.1080/02670836.2018.1446267
  • Zhang Y, Zhou YJ, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10:534–538. doi: 10.1002/adem.200700240
  • Soare V, Mitrica D, et al. Influence of remelting on microstructure, hardness and corrosion behaviour of AlCoCrFeNiTi high entropy alloy. Mater Sci Tech. 2015;31:1194–1200. doi: 10.1179/1743284715Y.0000000029
  • Guo YX, Liu QB, Zhou F. Microstructure and properties of Fe5Cr5SiTiCoNbMoW coating by laser cladding. Surf Eng. 2018;34:283–288. doi: 10.1080/02670844.2016.1213784
  • Kao YF, Lee TD, Chen SK, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros Sci. 2010;52:1026–1034. doi: 10.1016/j.corsci.2009.11.028
  • Lee CP, Chang CC, et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corros Sci. 2008;50:2053–2060. doi: 10.1016/j.corsci.2008.04.011
  • Takahiro Nagata et al. US, 6409965B1, 2002-06-25.
  • Yukio Kawaguchi. US, 6071323, 2000-06-06.
  • Ichihara K, et al. US, 6033536, 2000-03-07.
  • Zhao F, Song ZX, et al. Effects of substrate bias on structure and mechanical properties of AlCrTiWNbTa coatings. Surf Eng. 2013;29:778–781. doi: 10.1179/1743294413Y.0000000211
  • Lin CH, Duh JG, Yeh JW. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surf Coat Tech. 2007;201:6304–6308. doi: 10.1016/j.surfcoat.2006.11.041
  • Sure J, Sri Maha Vishnu D. Electrochemical conversion of oxide spinels into high-entropy alloy. J Alloys Compd. 2019;776:133–141. doi: 10.1016/j.jallcom.2018.10.171
  • Chang HW, Huang PK, et al. Observation of in-plane strain fluctuation in relaxed SiGe virtual substrate. Thin Solid Films. 2008;517:281–284. doi: 10.1016/j.tsf.2008.08.075
  • Zhang Y, Zuo T, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and Its application to characterization of the main alloying element. Mater Trans. 2005;46:2817–2829. doi: 10.2320/matertrans.46.2817
  • Tsai D-C, Chang Z-C, et al. Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering. J Alloy Compd. 2014;616:646–651. doi: 10.1016/j.jallcom.2014.07.095
  • Ta HQ, Perell DJ, et al. Stranski–krastanov and Volmer–Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016;16:6403–6410. doi: 10.1021/acs.nanolett.6b02826
  • McCann MTP, Mooney DA, et al. Novel, nanoporous silica and titania layers fabricated by magnetron sputtering. ACS Appl Mater Inter. 2011;3:252–260. doi: 10.1021/am100904w
  • Gostin PF, Gebert A, Schultz L. Comparison of the corrosion of bulk amorphous steel with conventional steel. Corros Sci. 2012;52:273–281. doi: 10.1016/j.corsci.2009.09.016
  • Andreu N, Flahaut D, et al. XPS investigation of surface reactivity of electrode materials: effect of the transition metal. ACS Appl Mater Inter. 2015;7:6629–6636. doi: 10.1021/am5089764
  • Lin CH, Duh JG. Corrosion behavior of (Ti–Al–Cr–Si–V)xNy coatings on mild steels derived from RF magnetron sputtering. Surf Coat Tech. 2008;203:558–561. doi: 10.1016/j.surfcoat.2008.04.067
  • Stern M, Geary AL. Electrochemical polarization. J Electrochem Soc. 1957;104:56–63. doi: 10.1149/1.2428496
  • Braic M, Balaceanu M. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl Surf Sci. 2013;284:671–678. doi: 10.1016/j.apsusc.2013.07.152
  • Yao SH, Su YL. Wear behavior of DC unbalanced magnetron sputter deposited ZrCN films. Mater Lett. 2005;59:3230–3233. doi: 10.1016/j.matlet.2005.04.064
  • Braic M, Braic V. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf Coat Tech. 2010;204:2010–2014. doi: 10.1016/j.surfcoat.2009.10.049
  • El Mel A, Angleraud B, et al. XPS study of the surface composition modification of nc-TiC/C nanocomposite films under in situ argon ion bombardment. Thin Solid Films. 2011;519:3982–3985. doi: 10.1016/j.tsf.2011.01.200
  • Yu F, Chenglin C, et al. Rare Metal Mat Eng. 2011;40:483–486. doi: 10.1016/S1875-5372(11)60037-4
  • Shyjumon I, Gopinadhan M, et al. Deposition of titanium/titanium oxide clusters produced by magnetron sputtering. Thin Solid Films. 2006;500:41–51. doi: 10.1016/j.tsf.2005.11.006
  • Gouttebaron R, Cornelissen D, et al. XPS study of TiOx thin films prepared by d.c. magnetron sputtering in Ar-O2 gas mixtures. Surf. Interface Anal. 2000;30:527–530. doi: 10.1002/1096-9918(200008)30:1<527::AID-SIA834>3.0.CO;2-Z
  • Sugiyama O, Murakami K, Kaneko S. XPS analysis of surface layer of sol-gel-derived PZT thin films. J. Eur Ceram Soc. 2004;24:1157–1116. doi: 10.1016/S0955-2219(03)00590-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.