282
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Pulse plating of Pd–Ag alloy films from deep eutectic solvents

, , , &
Pages 1081-1087 | Received 30 Oct 2018, Accepted 17 Jun 2019, Published online: 11 Jul 2019

References

  • Sharma B, Kim JS. Graphene decorated Pd–Ag nanoparticles for H2 sensing. Int J Hydrog Energy. 2018;43(24):11397–11402. doi: 10.1016/j.ijhydene.2018.03.026
  • Jang JS, Qiao S, Choi SJ, et al. Hollow Pd–Ag composite nanowires for fast responding and transparent hydrogen sensors. ACS Appl Mater Int. 2017;9(45):39464–39474. doi: 10.1021/acsami.7b10908
  • Tang L, Yu G, Si W, et al. Pd–Ag alloy dendritic nanowires: Fabrication and application in hydrogen sensor. J Nanosci Nanotechno. 2011;11(11):10255–10261. doi: 10.1166/jnn.2011.4989
  • Sharma B, Kim J-S. Pd/Ag alloy as an application for hydrogen sensing. Int J Hydrog Energy. 2017;42(40):25446–25452. doi: 10.1016/j.ijhydene.2017.08.142
  • Yue E, Yu G, Ouyang Y, et al. Electrochemical fabrication of Pd–Ag alloy nanowire arrays in anodic alumina oxide template. Journal Mater Sci Technol. 2008;24(6):850–856.
  • Mori K, Sano T, Kobayashi H, et al. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J Am Chem Soc. 2018;140(28):8902–8909. doi: 10.1021/jacs.8b04852
  • Fang C, Zhao G, Zhang Z, et al. Morphology engineering of Au/(PdAg alloy) nanostructures for enhanced electrocatalytic ethanol oxidation. Part Syst Char. 2018;35(10):1800258–1800276. doi: 10.1002/ppsc.201800258
  • Benipal N, Qi J, Liu Q, et al. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells. Appl Catal B-Environ. 2017;210:121–130. doi: 10.1016/j.apcatb.2017.02.082
  • Smith EL, Abbott A, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–11082. doi: 10.1021/cr300162p
  • Bernasconi R, Panzeri G, Accoglii A, et al. Electrodeposition From Deep Eutectic Solvents in Progress and Developments in Ionic Liquids: InTech; 2017.
  • Sebastian P, Vallés E, Gómez E. First stages of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium. Electrochim Acta. 2013;112:149–158. doi: 10.1016/j.electacta.2013.08.144
  • Böck R, Lanzinger G, Freudenberger R, et al. Effect of additive and current mode on surface morphology of palladium films from a non-aqueous deep eutectic solution (DES). J Appl Elechtrochem. 2013;43:1207–1216. doi: 10.1007/s10800-013-0608-4
  • Lanzinger G, Böck R, Freudenberger R, et al. Electrodeposition of palladium films from ionic liquid (IL) and deep eutectic solutions (DES): physical-chemical characterisation of non-aqueous electrolytes and surface morphology of palladium deposits. Trans Inst Met Finish. 2013;91(3):133–140. doi: 10.1179/0020296713Z.00000000097
  • Ghosh S, Roy S. Characterization of tin films synthesized from ethaline deep eutectic solvent. Mater Sci Eng: B. 2014;190:104–110. doi: 10.1016/j.mseb.2014.09.014
  • Bernasconi R, Zebarjadi M, Magagnin L. Copper electrodeposition from a chloride free deep eutectic solvent. J Electroanal Chem. 2015;758:163–169. doi: 10.1016/j.jelechem.2015.10.024
  • Abbott AP, Ballantyne A, Harris RC, et al. Comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim Acta. 2015;176:718–726. doi: 10.1016/j.electacta.2015.07.051
  • Alcanfor AAC, dos Santos LPM, Dias DF, et al. Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol. Electrochim Acta. 2017;235:553-560.
  • Pereira NM, Pereira CM, Araújo JP, et al. Zinc electrodeposition from deep eutectic solvent containing organic additives. J Electroanal Chem. 2017;801:545–551. doi: 10.1016/j.jelechem.2017.08.019
  • Green T, Su X, Roy S. Pulse plating of copper from deep eutectic solvents. ECS Trans. 2017;77(11):1247–1253. doi: 10.1149/07711.1247ecst
  • Bernasconi R, Lucotti A, Nobili L, et al. Ruthenium electrodeposition from deep eutectic solvents. J Electrochem Soc. 2018;165(13):D620–D627. doi: 10.1149/2.0541813jes
  • Abott AP, Azam M, Ryder KS, et al. Study of silver electrodeposition in deep eutectic solvents using atomic force microscopy. Trans Inst Met Finish. 2018;96(6):297–303. doi: 10.1080/00202967.2018.1520483
  • Tulodziecki M, Tarascon J-M, Taberna PL, et al. Importance of the double layer structure in the electrochemical deposition of Co from soluble Co2+ - based precursors in ionic liquid media. Electrochim Acta. 2014;134:55–66. doi: 10.1016/j.electacta.2014.03.042
  • Cojocaru P, Maganin L, Gomez E, et al. Using deep eutectic solvents to electrodeposit CoSm films and nanowires. Mat Lett. 2011;65(23-24):3597–3600. doi: 10.1016/j.matlet.2011.08.003
  • Yang HY, Guo XW, Chen XB, et al. On the electrodeposition of nickel-zinc alloys from a eutectic-based ionic liquid. Electrochim Acta. 2012;63:131–138. doi: 10.1016/j.electacta.2011.12.070
  • Chu Q, Liang J, Hao J. Electrodeposition of zinc-cobalt alloys from choline chloride-urea ionic liquid. Electrochim Acta. 2014;115:499–503. doi: 10.1016/j.electacta.2013.10.204
  • Gosh S, Roy S. Codeposition of Cu-Sn from ethaline deep eutectic solvent. Electrochim Acta. 2015;183:27–36. doi: 10.1016/j.electacta.2015.04.138
  • Panzeri G, Tresoldi M, Rinalsi C, et al. Electrodeposition of magnetic SmCo films from deep eutectic solvents and choline chloride-ethylene glycol mixture. J Electrochem Soc. 2017;164(13):D930–D933. doi: 10.1149/2.0111714jes
  • Zanella C, Xing S, Deflorian F. Effect of electrodeposition parameters on chemical and morphological characteristics of Cu-Sn coatings from a methanesulfonic acid electrolyte. Surf Coat Technol. 2013;236:394–399. doi: 10.1016/j.surfcoat.2013.10.020
  • Pallaro M, Moretto FL, Panzeri G, et al. Sn-Cu codeposition from a non-aqueous solution based on ethylene glycol for wafer-bonding applications: direct and pulse electroplating. Trans Inst Met Finish. 2018;96(5):265–268. doi: 10.1080/00202967.2018.1507329
  • Panzeri G, Accogli A, Gibertini E, et al. Electrodeposition of high-purity nanostructured iron films from Fe(II) and Fe(III) non-aqueous solutions based on ethylene glycol. Electrochim Acta. 2018;271:576–581. doi: 10.1016/j.electacta.2018.03.174
  • Ibl N. Some theoretical aspects of pulse electrolysis. Surf Technol. 1980;10:81–104. doi: 10.1016/0376-4583(80)90056-4
  • Puippe JC, Leaman FH. Theory and practise of pulse plating. Orlando: AESF Soc.; 1986.
  • Imaz N, García-Lecina E, Suárez C, et al. Influence of additives and plating parameters on morphology and mechanical properties of copper coatings obtained by pulse electrodeposition. Trans Inst Met Finish. 2009;87(2):64–71. doi: 10.1179/174591909X424807
  • Maharaja J, Raja M, Mohan S. Pulse electrodeposition of Cr–SWCNT composite from choline chloride based electrolyte. Surf Eng. 2014;30(10):722–727. doi: 10.1179/1743294414Y.0000000324
  • Yang H, Guo X, Birbilis N, et al. Tailoring nickel coatings via electrodeposition from a eutectic-based ionic liquid doped with nicotinic acid. Appl Surf Sci. 2011;257(231):9094–9102. doi: 10.1016/j.apsusc.2011.05.106
  • Fukui R, Katayama Y, Miura T. The effect of organic additives in electrodeposition of Co from an amide-type ionic liquid. Electrochim Acta. 2011;56:1190–1196. doi: 10.1016/j.electacta.2010.10.074
  • Ibrahim S, Bakkar A, Ahmed E, et al. Effect of additives and current mode on zinc electrodeposition from deep eutectic ionic liquids. Electrochim Acta. 2016;191:724–732. doi: 10.1016/j.electacta.2016.01.110
  • Song Y, Tang J, Hu J, et al. Interfacial assistant role of amine additives on zinc electrodeposition from deep eutectic solvents: an in situ X-ray imaging investigation. Electrochim Acta. 2017;240:90–97. doi: 10.1016/j.electacta.2017.04.063
  • Bazant MZ, Storey BD, Kornyshev AA. Double layer ion ionic liquids: Overscreening vs. crowding. Phys Rev Lett. 2011;109:149903–149906. doi: 10.1103/PhysRevLett.109.149903
  • Baldelli S. Interfacial structure of room-temperature ionic liquids at the solid–liquid interface as Probed by Sum Frequency Generation spectroscopy. J Phys Chem Lett. 2013;4:244–252. doi: 10.1021/jz301835j
  • Atkin R, Borisenko N, Drüschler M, et al. Structure and dynamics of the interfacial layer between ionic liquids and electrode materials. J Mol Liq. 2014;192:44–54. doi: 10.1016/j.molliq.2013.08.006
  • Manolova M, Böck R. Electrodeposition of Pd from a deep eutectic system: effect of additives and hydrodynamic conditions. Trans Inst Met Finish. 2019;97(3):161–168. doi: 10.1080/00202967.2019.1605755
  • Tai C-C, Su FY, Sun I-W. Electrodeposition of Pd–Ag in a Lewis basic 1-ethyl-3-methylimidazolium chloride-BF4 ionic liquid. Elechtrochim Acta. 2005;50:5504–5509. doi: 10.1016/j.electacta.2005.03.045
  • Łukaszewski M, Klimek K, Czerwiński A. Microscopic, spectroscopic and electrochemical characterization of the surface of Pd–Ag alloys. J Electroanal Chem. 2009;637:13–20. doi: 10.1016/j.jelechem.2009.09.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.