683
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The correlation between structure, multifunctional properties and application of PVD MAX phase coatings. Part III. Multifunctional applications

Pages 303-325 | Received 04 Apr 2019, Accepted 13 Aug 2019, Published online: 02 Sep 2019

References

  • Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: a review. RSC Adv. 2012;2:7617–7632.
  • Wang J, Cheng Q, Tang Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem Soc Rev. 2012;41:1111–1129.
  • Tan TL, Wong D, Lee P. Iridescence of a shell of mollusk Haliotis Glabra. Opt Express. 2004;12(20):4847–4854.
  • Ruiz-Hitzky E, Darder M, Aranda P. Functional biopolymer nanocomposites based on layered solids. J Mater Chem. 2005;15:3650–3662.
  • Barsoum MW. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–281.
  • Barsoum MW, El-Raghy T. The MAX phases: unique new carbide and nitride materials. Am Sci. 2001;89:336–345.
  • Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011;41:195–227.
  • Barsoum MW. MAX phases: properties of machinable carbides and nitrides. Weinheim: Wiley VCH GMbH; 2013.
  • Music D, Schneider JM. The correlation between the electronic structure and elastic properties of nanolaminates. JOM. 2007;59:60–64.
  • Eklund P, Beckers M, Jansson U, et al. The M(n+1)AX(n) phases: materials science and thin-film processing. Thin Solid Films. 2010;518:1851–1878.
  • Sun ZM. Progress in research and development on MAX phases: a family of metallic ceramics. Int Mater Rev. 2011;56(3):143–166.
  • Fashandi H, Lai C-C, Dahlqvist M, et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem Commun. 2017;53:9554–9557.
  • Fashandi H, Dahlqvist M, Lu J, et al. Synthesis of Ti3AuC2, Ti3Au2C2, and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature stable Ohmic contacts to SiC. Nat Mater 2017;16:814–818.
  • Guilera G, Gorges B, Pascarelli S, et al. Novel high-temperature reactors for in situ studies of three-way catalysts using turbo-XAS. J Synchrotron Rad. 2009;16:628–634.
  • Tian WB, Wang PL, Kan YM, et al. Oxidation behaviour of Cr2AlC ceramics at 1100 and 1250°C. J Mater Sci. 2008;43:2785–2791.
  • Berger O, Boucher R, Ruhnow M. Part I. mechanism of oxidation of Cr2AlC films in temperature range 700–1200°C. Surf Eng. 2015;31(5):373–385.
  • Berger O, Boucher R, Ruhnow M. Part II. oxidation of yttrium doped Cr2AlC films in temperature range between 700–1200°C. Surf Eng. 2015;31(5):386–396.
  • Gupta S, Filimonov D, Palanisamy T, et al. Ta2AlC and Cr2AlC Ag-based composites-New solid lubricant materials for use over a wide temperature range against Ni-based superalloys and alumina. Wear. 2007;262:1479–1489.
  • Berger O, Boucher R. Crack healing in Y-doped Cr2AlC-MAX phase coatings. Surf Eng. 2017;33(3):192–203.
  • van der Zwaag S (ed). Self-healing materials. An alternative approach to 20 centuries of materials science Springer series in materials science 100. Dordrecht: Springer; 2007; 385.
  • Greil P. Generic principles of crack-healing ceramics. J Adv Ceram. 2012;1(4):249–267.
  • Walter C, Sigumonrong DP, EI-Raghy T, et al. Towards large area deposition of Cr2AlC on steel. Thin Solid Films. 2006;515:389–393.
  • Kurtoglu CM, Presser V, Lu J, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253.
  • Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322–1331.
  • Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.
  • Studart AR, Gonzenbach UT, Tervoort E, et al. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006;89(6):1771–1789.
  • Sommers A, Wang Q, Han X, et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-A review. Appl Therm Eng. 2010;30(11–12):1277–1291.
  • Gonzalez-Julian J, Onrubia S, Bram M, et al. High temperature oxidation and compressive strength of Cr2AlC MAX phase foams with controlled porosity. J Am Ceram Soc. 2017;101:542–552.
  • Yoo H-I, Barsoum MW, El-Raghy T. Materials science: Ti3SiC2 has negligible thermopower. Nature. 2000;407:581.
  • Lai C-C, Fashandi H, Lu J, et al. Phase formation of nanolaminated Mo2AuC and Mo2(Au1−xGax)2C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films. Nanoscale. 2017;9:17681–17687.
  • Lai C-C, Tao Q, Fashandi H, et al. Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC. Apl Materials. 2018;6:026104.
  • Kašpar J, Fornasiero P, Hickey N. Automotive catalytic converters: current status and some perspectives. Catal Today. 2003;77(4):419–449.
  • Skoglundh M, Fridell E. Strategies for enhancing low-temperature activity. Top Catal. 2004;28:79–87.
  • Pollock TR, Tin S. Nickel based superalloys for advanced turbine engines: chemistry, microstructure and properties,. J Propuls Power. 2006;22(2):361–374.
  • Boucher R, Berger O, Leyens C. Magnetic properties of bulk and thin film Cr-Al-C compounds. Surf Eng. 2016;32(3):172–177.
  • Boucher R, Berger O. Magnetic model of oxidation process of Y containing Cr-Al-C films. Surf Eng. 2018;34(1):6–13.
  • Berger O, Leyens C, Heinze S, et al. Characterisation of Cr-Al-C and Cr-Al-C-Y films synthesized by high power Impulse magnetron sputtering at low deposition temperature. Thin Solid Films. 2015;580:6–11.
  • Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films. 2017;621:108–130.
  • Li S, Ahuja R, Barsoum MW, et al. Optical properties of Ti3SiC2 and Ti4AlN3. Appl Phys Lett. 2008;92:221907.
  • Le Flem M, Liu X, Doriot S, et al. Irradiation damage in Ti3(Si,Al)C2: a TEM investigation. Int J Appl Ceram Technol. 2010;7:766–775.
  • Liu XM, Le Flem M, Béchade JL, et al. Nanoindentation investigation of heavy ion irradiated Ti3(Si,Al)C2. J Nucl Mater 2010;401:149–153.
  • Nappé J, Grosseau P, Audubert F, et al. Damages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic interactions at room temperature. J Nucl Mater. 2009;385:304–307.
  • Whittle KR, Blackford MG, Aughterson RD, et al. Radiation tolerance of M n+1 AXn phases, Ti3AlC2 and Ti3SiC2. Acta Mater. 2010;58:4362–4368.
  • Hoffman EN, Vinson DW, Sindelar RL, et al. MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis. Nucl Eng Des. 2012;244:17–24.
  • Frodelius J, Sonestedt M, Björklund S, et al. Ti2AlC coatings deposited by high velocity Oxyfuel spraying. Surf Coat Technol. 2008;202:5976–5981.
  • Sonestedt M, Frodelius J, Palmquist J-P, et al. Microstructure of high velocity oxyfuel sprayed Ti2AlC coatings. J Mater Sci. 2010;45:2760–2769.
  • Ward JH. MAX phase ceramics for nuclear Applications. PhD thesis, School of Materials, University of Manchester, Faculty of Science and Engineering, Manchester, UK., 2018, 183.
  • Shi SL, Pan W, Fang MH, et al. Reinforcement of hydroxyapatite bioceramic by addition of Ti3SiC2. J Am Ceram Soc. 2006;89(2):743–745.
  • Shi SL, Pan W. Machinable Ti3SiC2/hydroxyapatite bioceramic composites by spark plasma sintering. J Am Ceram Soc. 2007;90(10):3331–3333.
  • Gao NF, MiyamotoI Y, Oonishi H, et al. Investigation on the application of Ti3SiC2 ceramics for biomaterials. J Mater Sci Lett. 2002;21:783–785.
  • Hetmańczyk M, Swadźba L, Mendala B. Advanced materials and protective coatings in aero-engines application. JAMME. 2007;24(1):372–381.
  • Peters M, Kumpfert J, Ward CH, et al. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419–427.
  • Pomeroy MJ. Coatings for gas turbine materials and long term stability issues. Mater Des. 2005;26:223–231.
  • Fauchais P, Vardelle A. Thermal Sprayed Coatings Used Against Corrosion and Corrosive Wear,1–38, Advanced Plasma Spray Applications, Edited by Dr. Hamid Jazi, In Tech Europe, ISBN 978-953-51-0349-3, 2012, 250.
  • Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37:891–898.
  • Peters M, Saruhan-Brings B, Schulz U. Advanced coatings for blades of future aero engines, Proc. CEAS 2009 European Air and Space Conference, 2009, Manchester, UK, 1–9.
  • Source. Pratt&Whitney/MTU Aero Engines; www.mtu.de/en/take-off/how_engines_work/index.html.
  • Maurer C, Schulz U. Erosion resistant titanium based PVD coatings on CFRP. Wear. 2013;302:937–945.
  • Maurer C. Versagensmechanismen von PVD-Beschichtungen auf CFK unter Erosionsverschleiß, PhD thesis, RWTH, Aachen, 2014,114.
  • Stewart R. Carbon fibre composites poised for dramatic growth. Reinf Plast. 2009;53:16–21.
  • Klocke F, Zeis M, Klink A, et al. Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components. Procedia CIRP. 2013;6:368–372.
  • Titanium and Titanium Alloys, (Eds.: Leyens C., Peters M.), Wiley-VCH, Weinheim, 2003.
  • Akca E, Gürsel A. A review on superalloys and IN718 nickel-based INCONEL superalloy. Period Eng Nat Sci. 2015;3:15–27.
  • Meschter PJ, Opila EJ, Jacobson NS. Water-vapor-mediated volatilization of high temperature materials. Annu Rev Mater Res. 2013;43:559–588.
  • Zok FW. Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency. Am Ceram Soc Bull. 2016;95:22–28.
  • Hamed A, Tabakoff W, Wenglarz R. Erosion deposition in turbomachinery. J Propul Power. 2006;22(2):350–360.
  • Grieb H. Verdichter für Turbo- Flugtriebwerke. Heidelberg: Springer-Verlag Berlin; 2009; 337.
  • Rossmann A. Die Sicherheit von Turbo-Flugtriebwerken, Band 1,Turbo Consult, 2000, 600.
  • Chen X, Wang R, Yao N, et al. Foreign object damage in a thermal barrier system: mechanisms and simulations. Mater Sci Eng A. 2003;352(1–2):221–231.
  • Drexler JM, Gledhill AD, Shinoda K, et al. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23:2419–2424.
  • from Wikipedia https://de.wikipedia.org/wiki/Datei:Eyjafjallajokull-April-17.JPG
  • from Wikipedia https://en.wikipedia.org/wiki/File:MountRedoubtEruption.jpg
  • from Wikipedia https://en.wikipedia.org/wiki/Dust_storm
  • https://en.wikipedia.org/wiki/File:MtStHelensAsh1980eruption.jpg
  • https://upload.wikimedia.org/wikipedia/commons/8/8d/Ashsem_small.jpg
  • https://en.wikipedia.org/wiki/Brownout (aeronautics)
  • Webley P, Mastin L. Improved prediction and tracking of volcanic ash clouds. J Volcanol Geotherm Res. 2009;186:1–9.
  • Alfaro SC, Gomes L, Rajot JL, et al. Modeling mineral aerosol production by wind erosion: part 1 physical bases. J Aerosol Sci. 2000;31:S426–S427.
  • Smialek JL, Archer FA, Garlick RG. Turbine airfoil degradation in the Persian Gulf War. JOM. 1994;46:39–41.
  • from Wikipedia https://en.wikipedia.org/wiki/Aviation
  • from Wikipedia https://en.wikipedia.org/wiki/Volcanic_ash
  • Heutling F, Uihlein T, Brendel T, et al. Erosionsschutz für Titan- und Superlegierungen. Tech Rep. 2010;29:63–68.
  • Tabakoff W, Wakeman T. Test facility for material erosion at high temperature. ASTM. 1979;664:123–135.
  • Schroeter O. Herstellung und Charakterisierung von PVD-Schichten auf Basis der Cr2AlC–MAX-Phase, PhD thesis, Brandenburgische Technische Universität Cottbus (BTU), Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen, Cottbus, 2011, 278.
  • Schrade M, Staudacher S. High-speed test rig for the investigation of erosion damage of axial compressor blades, Document ID: 340033, Deutscher Luft- und Raumfahrtkongress, 2014, 1–8.
  • Tabakoff W. Protection of coated superalloys from erosion in turbomachinery and other systems exposed to particulate flows. Wear. 1999;233–235:200–208.
  • Humphrey JAC. Fundamentals of fluid motion in erosion by solid particle impact. Int J Heat Fluid Fl. 1990;11(3):170–195.
  • Parameswaran VR, Immarigeon JP, Nagy D. Titanium nitride coating for aero engine compressor gas path components. Surf Coat Technol. 1992;52(3):251–260.
  • Kolkman HJ. Effect of TiN/Ti gas turbine compressor coatings on the fatigue strength of Ti-6A1-4V base metal. Surf CoatTechnol. 1995;72:30–36.
  • Bielawski M, Beres W. FE modelling of surface stresses in erosion-resistant coatings under single particle impact. Wear. 2007;262:167–175.
  • Muboyadzhyan SA. Erosion-Resistant coatings for gas turbine compressor blades. Russ Metall. 2009;3:3–20.
  • Wheeler DW, Wood RJK. Fracture of diamond coatings by high velocity sand erosion. Philos Mag. 2009;89(3):285–310.
  • Borawski B, Singha J, Todda JA, et al. Multi-layer coating design architecture for optimum particulate erosion resistance. Wear. 2011;271(11–12):2782–2792.
  • Yashar PC, Sproul WD. Nanometer scale multilayered hard coatings. Vacuum. 1999;55(3–4):179–190.
  • Naveed M. Study of crystallography and erosion behavior of single and multilayer coatings used for applications in aero engines, PhD thesis, BTU, Cottbus, 2015, 87.
  • Larsson M, Bromark M, Hedenqvist P, et al. Deposition and mechanical properties of multilayered PVD Ti-TiN coatings. Surf Coat Technol. 1995;76–77(1):202–205.
  • Bemporad E, Sebastiani M, Pecchio C, et al. High thickness Ti/TiN multilayer thin coatings for wear resistant applications. Surf Coat Technol. 2006;201(6):2155–2165.
  • Mendibide C, Steyer P, Esnouf CP, et al. X-ray diffraction analysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel. Surf Coat Technol. 2005;200:165–169.
  • Rickerby DS, Jones AM, Bellamy BA. Internal stress in titanium nitride coating: modelling of complex stress systems. Surf Coat Technol. 1988;36:661–674.
  • Bromark M, Larsson M, Hedenqvist P, et al. Wear of PVD Ti/TiN multilayer coatings. Surf Coat Technol. 1997;90(3):217–223.
  • Leyland A, Matthews A. Thick Ti/TiN multilayered coatings for abrasive and erosive wear resistance. Surf Coat Technol. 1994;70(1):19–25.
  • Borawski B, Todda JA, Singh J, et al. The influence of ductile interlayer material on the particle erosion resistance of multilayered TiN based coatings. Wear. 2011;271:2890–2898.
  • Bousser E, Benkahoul M, Martinu L, et al. Effect of microstructure on the erosion resistance of Cr–Si–N coatings. Surf Coat Technol. 2008;203(5–7):776–780.
  • Bousser E, Martinu L, Klemberg-Sapieha JE. Solid particle erosion mechanisms of hard protective coating. Surf Coat Technol. 2013;235:383–393.
  • Yang Q, Zhao LR, Cai F, et al. Wear, erosion and corrosion resistance of CrTiAlN coating deposited by magnetron sputtering. Surf Coat Technol. 2008;202(16):3886–3892.
  • Lin J, Moore JJ, Mishra B, et al. Nano-structured CrN/AlN multilayer coatings synthesized by pulsed closed field unbalanced magnetron sputtering. Surf. Coat. Technol. 2009;204(6–7):936–940.
  • Wolfe DE, Gabriel BM, Reedy MW. Nanolayer (Ti,Cr)N coatings for hard particle erosion resistance. Surf Coat Technol. 2011;205:4569–4576.
  • Reedy MW, Eden TJ, Potter JK, et al. Erosion performance and characterization of nanolayer (Ti,Cr)N hard coatings for gas turbine engine compressor blade applications. Surf Coat Technol. 2011;206:464–472.
  • Gachon Y, Ienny P, Forner A, et al. Erosion by solid particles of W/W-N multilayer coatings obtained by PVD process. Surf Coat Technol. 1999;113(1–2):140–148.
  • Ortner K, Kohns A, Turley F, et al. Erosionsschutzschichten für Flugtriebwerke. Vak Forsch Praxis. 2009;21(3):18–21.
  • Panich N, Wangyao P, Hannongbua S, et al. Trobological study of nano-multilayered ultra-hard coatings based on TiB2. Rev Adv Mater Sci. 2006;13:117–124.
  • Hassani S, Klemberg-Sapieha JE, Bielawski M, et al. Design of hard coating architecture for the optimization of erosion resistance. Wear. 2008;265:879–887.
  • Barsoum MW, Ali M, El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall Mater Trans A. 2000;31:1857–1865.
  • Barsoum MW, Salama I, El-Raghy T, et al. Thermal and electrical properties of Nb2AlC, (Ti,Nb)2AlC and Ti2AlC. Metall Mater Trans A. 2002;33(9):2775–2779.
  • Barsoum MW. Physical properties of the MAX phases. In: Buschow KHJ, Cahn RW, Flemings MC, editors. Encyclopedia of materials science and Technology. Amsterdam: Elsevier; 2006. p. 25–187.
  • Gupta S, Filimonov D, Zaitsev V, et al. Ambient and 550°C tribological behavior of select MAX phases against Ni-based superalloys. Wear. 2008;264:270–278.
  • Barsoum MW, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc. 1996;7:1953–1956.
  • Gupta S, Filimonov D, Palanisamy T, et al. Tribological behaviour of select MAX phases against Al2O3 at elevated temperatures. Wear. 2008;265:560–565.
  • Tian WB, Wang PL, Zhang GJ, et al. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr Mater. 2006;54:841–846.
  • Tian WB, Wang PL, Zhang GJ, et al. Effect of composition and processing on phase assembly and mechanical property of Cr2AlC ceramics. Mater Sci Eng A. 2007;454:132–138.
  • Zhou YC, Sun ZM, Wang XH, et al. Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M = Al, Si and Ge). J Phys: Condens Matter. 2001;13:10001–10010.
  • Zhou YC, Wang XH. Deformation of polycrystalline Ti2AIC under compression. Mater Res Innov. 2001;5(2):87–93.
  • Lin ZJ, Zhou YC, Li MS, et al. In-situ hot pressing/solid–liquid reaction synthesis of bulk Cr2AlC. Z Metallkd. 2005;96:291–296.
  • Tian WB, Sun Z, Du Y, et al. Synthesis reactions of Cr2AlC from Cr-Al4C3-C by pulse discharge sintering. Mater Lett. 2008;62:3852–3855.
  • Zhou YC, Wang XH, Sun ZM, et al. Electronic and structural properties of the layered ternary carbide Ti3AlC2. J Mater Chem. 2001;11:2335–2339.
  • Palmquist J-P, Jansson U, Seppänen T, et al. Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl Phys Lett. 2002;81:835–837.
  • Emmerlich J, Högberg H, Sasvari S, et al. Growth of Ti3SiC2 thin films by elemental target magnetron sputtering. J Appl Phys. 2004;96:4817–4826.
  • Mertens R, Sun ZM, Music D, et al. Effect of the composition on the structure of Cr-Al-C investigated by combinatorial thin film synthesis and ab Initio calculations. Adv Eng Mater. 2004;6:903–907.
  • Schneider JM, Sun ZM, Mertens R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC. Solid State Commun. 2004;130:445–449.
  • Schneider JM, Sigumonrong DP, Music D, et al. Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics. Scr Mater. 2007;57:1137–1140.
  • Music D, Schneider JM. The correlation between the electronic structure and elastic properties of nanolaminates. JOM. 2007;59:60–64.
  • Walter C, Sigumonrong DP, EI-Raghy T, et al. Towards large area deposition of Cr2AlC on steel. Thin Solid Films. 2006;515:389–393.
  • Eichner D, Schlieter A, Leyens C, et al. Solid particle erosion behavior of nanolaminated Cr2AlC films. Wear. 2018;402–403:187–195.
  • Shen L, Eichner D, van der Zwaag S, et al. Reducing the erosive wear rate of Cr2AlC MAX phase ceramic by oxidative healing of local impact damage. Wear. 2016;358–359:1–6.
  • Brady MP, Gleeson B, Wright IG. Alloy design strategies for promoting protective oxide-scale formation. JOM. 2000;52:16–21.
  • Smialek JL. Maintaining adhesion of protective Al2O3 scales. JOM. 2000;52:22–25.
  • Bartolotta PA, Krause DL. Titanium aluminide applications in the high speed civil transport, NASA/TM-1999–209071, International Symposium on Gamma Titanium Aluminides sponsored by The Minerals, Metals and Materials Society, San Diego, California, February 28-March 4, 1999, 1–9.
  • Liu GM, Li MS, Zhou YC. Hot corrosion of Ti3SiC2-based ceramics coated with Na2SO4 at 900 and 1000 °C in air. Corros Sci. 2003;45:1217–1226.
  • Wang XH, Zhou YC. Hot corrosion of Na2SO4-coated Ti3AlC2 in air at 700–1000°C. J Electrochem Soc. 2004;151(9):B505.
  • Liu GM, Li MS, Zhou YC. Effect of Na2SO4 and water vapor on the corrosion of Ti3SiC2. Oxid Met. 2006;66:115–125.
  • Lin ZJ, Li MS, Wang JY, et al. High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 2007;55:6182–6191.
  • Lin ZJ, Li MS, Wang JY, et al. Microstructure and high-temperature corrosion behavior of a Cr–Al–C composite. J Am Ceram Soc. 2007;90:3930–3937.
  • Li S, Song G, Kwakernaak K, et al. Multiple crack healing of a Ti2AlC ceramic. J Eur Ceram Soc. 2012;32:1813–1820.
  • Li SB, Xiao LO, Song GM, et al. Oxidation and crack healing behavior of a fine-grained Cr2AlC ceramic. J Am Ceram Soc. 2013;96(3):892–899.
  • Smialek JL. Oxygen diffusivity in alumina scales grown on Al-MAX phases. Corros Sci. 2015;91:281–286.
  • Smialek JL. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxid Met. 2015;83:351–366.
  • Smialek JL, Garg A. Interfacial reactions of a MAX phase/superalloy hybrid. Surf Interface Anal. 2015;47:844–853.
  • Smialek JL, Harder BJ, Garg A. Oxidative durability of TBCs on Ti2AlC MAX phase substrates. Surf Coat Technol. 2016;285:77–86.
  • Smialek JL. Unusual oxidative limitations for Al-MAX phases. NASA/TM-2017-219444, Cleveland, OH, 2017, 1–29.
  • Smialek JL. Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig. J Eur Ceram Soc. 2017;37:23–34.
  • Smialek JL. Oxidation of Al2O3 scale-forming MAX phases in turbine environments. Metall Mater Trans A. 2017;49:782–792.
  • Smialek JL, Nesbitt JA, Gabb TP, et al. Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy. Mater Sci Eng A. 2018;711:119–129.
  • Aerospace Materials Handbook, edited by Sam Thang, Dongliang Zhao, Advances in Materials Science and Engineering, CRC Press, Taylor &Francis Group, Boca Raton, 2016, 744.
  • Reed RG. The Supperalloys: Fundamentals and applications. Cambridge: Cambridge University Press; 2006.
  • Aguilar J, Schievenbusch A, Kättlitz O. Investment casting technology for production of TiAl low pressure turbine blades - process engineering and parameter analysis. Intermetallics. 2011;19:757–761.
  • Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics. 2006;14:1123–1129.
  • http://3dprint.com/12262/ge-ebm-3d-printing
  • Lee DB, Nguyen T, Han J, et al. Oxidation of Cr2AlC at 1300°C in air. Corros Sci. 2007;49(10):3926–3934.
  • Lee DB, Park S. Oxidation of Cr2AlC between 900 and 1200°C in Air. Oxid Met. 2007;68(5–6):211–222.
  • Lee DB, Nguyen TD. Cyclic oxidation of Cr2AlC between 1000 and 1300°C in air. J Alloys Compd. 2008;464:434–439.
  • Lee DB, Nguyen T, Park S. Long-time oxidation of Cr2AlC between 700 and 1000°C in air. Oxid Met. 2012;77:275–287.
  • Tian WB, Wang PL, Kan YM, et al. Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders. Mater Sci Eng A. 2007;443:229–234.
  • Xiao L-O, Li S-B, Song G, et al. Synthesis and thermal stability of Cr2AlC. J Eur Ceram Soc. 2011;31:1497–1502.
  • Zhou Y, Sun Y, Chen S, et al. In-situ hot pressing/solid–liquid reaction synthesis of dense titanium silicon carbide bulk ceramics. Mater Res Innov. 1998;2:142–146.
  • Goward GW, Boone DH. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxid Met. 1971;3(5):475–495.
  • Goward GW, Cannon LW. Pack Cementation coatings for superalloys, History, Theory and practice. J Eng Gas Turbine Power. 1988;110(1):150–154.
  • Sully AH, Brandes EA. Chromium. London: Butterworths; 1967; 2nd ed., Chap. 7.
  • Peng X, Yan J, Xu C, et al. Oxidation at 900°C of the cromized coating on A3 carbon steel with the electrodeposition pretreatment of Ni or Ni-GeO2 film. Metall Mater Trans A. 2008;39:119–129.
  • Rapp RA, Wang D, Weisert T. Simultaneous chromizing-aluminzing of iron and iron-based alloys by pack cementation. In: M Hobaib, R Krutenat, editors. Metallurgical coating. Warrendale, PA: TMS-AIME; 1987. p. 131.
  • Bianco R, Rapp RA. Pack cementation aluminide coatings on superalloys: codeposition of Cr and reactive elements. J Electrochem Soc. 1993;140:1181–1190.
  • Bianco R, Rapp RA, Smialek JL. Chromium and reactive element modified aluminide diffusion coatings on superalloys: environmental testing. J Electrochem Soc. 1993;140:1191–1203.
  • Birks N, Meier GH, Pettit FS. Introduction to the high temperature of metals. Cambridge: Cambridge University Press; 2006; 2nd edn, 62–105.
  • Malik M, Morbioli K, Huber P. In: R Brunetaud, editor. High temperature alloys for Gas turbines. Dordrecht: D. Reidel Publishing Co.; 1982. p. 87–98.
  • Nicholls JR, Saunders SRJ. In: E Bachelet, editor. High temperature materials for power engineering. Dordrecht: Kluwer Academic Publishers; 1990. p. 865–875.
  • Lehnert G, Meinhardt H. Present state and trend of development of surface coating methods against oxidation and corrosion at high temperatures. Electrodepos Surf Treat. 1972;1:71–76.
  • Göbel M, Rahmel A, Schütze M, et al. Interdiffusion between the platinum-modified aluminide coating RT-22 and nickel-based single-crystal superalloys at 1000 and 1200 °C. Mater High Temp. 1994;12:301–309.
  • Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315–348.
  • Nicholls JR. Designing oxidation-resistant coatings. JOM. 2000;52:28–35.
  • Duret C, et al. High temperature alloys for Gas turbines. In: R Brunetaud, Dordrecht: D. Reidel Publishing Co.; 1982. p. 53–87.
  • Bornstein NS, Smeggil J. Corrosion of metals processed by directed energy Beams. Warrendale, PA: TMS; 1982. p. 147–158.
  • Saunders SRJ, Nicholls JR. Hot salt corrosion test procedures and coating evaluation. Thin Solid Films. 1984;119:247–269.
  • Simenz RF. The influence of aerospace – performance requirements on development of advanced structural materials. Philos Trans Royal Soc A. 1987;322(1567):323–333.
  • Perepezko JH. The hotter the engine, the better. Science. 2009;326:1068–1069.
  • Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296:280–284.
  • Nicholls JR, Simms NJ, Chan WY, et al. Smart overlay coatings — concept and practice. Surf. Coat. Technol. 2002;149:236–244.
  • Evans AG, Mumm DR, Hutchinson JW, et al. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci. 2001;46(5):505–553.
  • Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28:1405–1419.
  • Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 2003;33:383–417.
  • Levi CG. Emerging materials and processes for thermal barrier systems. Curr Opin Solid State and Mater Sci. 2004;8:77–91.
  • Vaßen R, Jarligo MO, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol. 2010;205:938–942.
  • Ruud JA, Bartz A, Borom MP, et al. Strength degradation and failure mechanisms of electron-beam physical-vapor-deposited thermal barrier coatings. J Am Ceram Soc. 2001;84:1545–1552.
  • Xu T, Faulhaber S, Mercer C, et al. Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY. Acta Mater. 2004;52:1439–1450.
  • Ambrico JM, Begley MR, Jordan EH. Stress and shape evolution of irregularities in oxide films on elastic-plastic substrates due to thermal cycling and film growth. Acta Mater. 2001;49:1577–1588.
  • Mumm DR, Watanabe M, Evans AG, et al. The influence of test method on failure mechanisms and durability of a thermal barrier system. Acta Mater. 2004;52:1123–1131.
  • Tolpygo VK, Clarke DR. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Mater. 2000;48:3283–3293.
  • Karlsson AM, Hutchinson JW, Evans AG. A fundamental model of cyclic instabilities in thermal barrier systems. J Mech Phys Solids. 2002;50:1565–1589.
  • Xu T, He MY, Evans AG. A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide. Acta Mater. 2003;51:3807–3820.
  • Nicholls JR, Deakin MJ, Rickerby DS. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings. Wear. 1999;233–235:352–361.
  • Wellman RG, Nicholls JR. Some observations on erosion mechanisms of EB PVD TBCS. Wear. 2000;242:89–96.
  • Bruce RW. Development of 1232°C (2250°F) erosion and impact tests for thermal barrier coatings. Tribol Trans. 1998;41:399–410.
  • Chen X, He MY, Spitsberg I, et al. Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear. 2004;256:735–746.
  • Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp Sci Technol. 2003;7:73–80.
  • Stott FH, Wood GC. Growth and adhesion of oxide scales on Al2O3 forming alloys and coatings. Mater Sci Eng. 1987;87:267–274.
  • Tolpygo VK. Microstructural evidence for counter-diffusion of aluminum and oxygen during the growth of alumina scales. Mater High Temp. 2003;20:261–271.
  • Shillington EAG, Clarke DR. Spalling failure of a thermal barrier coating associated with aluminium depletion in the bond-coat. Acta Mater. 1999;47(4):1297–1305.
  • Lee EY, Biederman RR, Sisson RD. Diffusional interactions and reactions between a partially stabilized zirconia thermal barrier coating and the NiCrAlY bond coat. Mater Sci Eng A. 1989;120–121, 2:467–473.
  • Mumm DR, Evans AG. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition. Acta Mater. 2000;48:1815–1827.
  • Gell M, Jordan E, Vaidyanathan K, et al. Bond strength, bond stress and spallation mechanisms of thermal barrier coatings. Surf Coat Technol. 1999;120–121:53–60.
  • Clarke DR, Pompe W. Critical radius for interface separation of a compressively stressed film from a rough surface. Acta Mater. 1999;47(6):1749–1756.
  • Clarke DR, Christensen RJ, Tolpygo VK. The evolution of oxidation stresses in zirconia thermal barrier coated superalloy leading to spalting failure. Surf Coat Technol. 1997;94–95:89–93.
  • Tolpygo VK, Clarke DR. Wrinkling of (-alumina films grown by oxidation – II. oxide separation and failure. Acta Mater. 1998;46(14):5167–5174.
  • Evans AG, Fleck NA, Faulhaber S, et al. Scaling laws governing the erosion and impact resistance of thermal barrier coatings. Wear. 2006;260:886–894.
  • Chang GC, Phucharoen WA, Miller RA. Coating morphologies of supersonic plasma-sprayed stabilized zirconium oxides. Surf Coat Technol. 1987;30:29–40.
  • Cheng J, Jordan EH, Barber B, et al. Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system. Acta Mater. 1998;46:5839–5850.
  • Freborg AM, Ferguson BL, Brindley WJ, et al. Modeling oxidation induced stresses in thermal barrier coatings. Mater Sci Eng A. 1998;245:182–190.
  • Karlsson AM, Evans AG. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems. Acta Mater. 2001;49:1793–1804.
  • Stephenson DJ, Nicholls JR. Modelling the influence of surface oxidation on high temperature erosion wear. Wear. 1995;186–187:284–290.
  • Wellman RG, Nicholls JR. High temperature erosion-oxidation mechanisms, maps and models. Wear. 2004;256(9–10):907–917.
  • Nijdam TJ, Sloof WG. Combined pre-annealing and pre-oxidation treatment for processing of thermal barrier cotings on NiCoCrAlY bond coatings. Surf Coat Technol. 2006;201:3894–3900.
  • Mao W. Kinetics of self-healing reaction in TBC with MoSi2 based sacrificial particles, PhD thesis, Department of Materials Science and Engineering Faculty of Mechanical, Maritime and Materials Engineering Delft University of Technology, 2013, 153.
  • Gonzalez-Julian J, Go T, Mack DE, et al. Thermal cycling testing of TBCs on Cr2AlC MAX phase substrates. Surf Coat Technol. 2018;340:17–24..
  • Hass DD, Slifka AJ, Wadley HNG. Low thermal conductivity vapour deposited zirconia microstructures. Acta Mater. 2001;49:973–983.
  • Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci. 2001;36:3003–3010.
  • Brady MP, Tortorelli PF, More KL, et al. Coating and near-surface modification design strategies for protective and Functional surfaces. Mater Corros. 2005;56(11):748–755.
  • Rajendran R. Gas turbine coatings – an overview. Eng Fail Anal. 2012;26:355–369.
  • Rott M, Igenbergs E, Baur H, et al. Domestic object damage investigations on turbine blade material. Int J Impact Eng. 2001;26:651–662.
  • Kim J, Dunn MG, Baran AJ, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines. J Eng Gas Turb Power. 1993;115:641–651.
  • Chen WR, Zhao LR. Review – volcanic ash and its influence on aircraft engine components. Procedia Eng. 2015;99:795–803.
  • Xia J, Yang L, Wu RT, et al. On the resistance of rare earth oxide-doped YSZ to high temperature volcanic ash attack. Surf Coat Technol. 2016;307:534–541.
  • Morrell P, Taylor R. Thermal diffusivity of thermal barrier coating of ZrO2 stabilized with Y2O3. High Temp-High Press. 1985;17:79–88.
  • Klemens PG. Theory of thermal conductivity of nonstoichiometric oxide and carbide. High Temp-High Press. 1985;17:41–54.
  • Renteria FA, Saruhan B, Schulz U, et al. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs. Surf Coat Technol. 2006;201:2611–2620.
  • Saruhan B, Ochrombel R, Ryukhtin V, et al. Analysis of anisotropic void system in electro physical vapour deposited (EB-PVD) thermal barrier coatings. Adv Eng Mat. 2009;11(6):488–494.
  • Schulz U, Fritscher K, Rätzer-Scheibe H-J, et al. Thermocyclic behaviour of microstructurally modified EB-PVD thermal barrier coatings. Mater Sci Forum. 1997;251–254:957–964.
  • Nicholls JR, Lawson KJ, Johnstone A, et al. Low thermal conductivity EB-PVD thermal barrier coatings. Mater Sci Forum. 2001;369–372:595–606.
  • Heydt P, Luo C, Clarke DR. Crystallographic texture and thermal conductivity of zirconia thermal barrier coatings deposited on different substrates. J Am Ceram Soc. 2001;84(7):1539–1544.
  • Wellman RG, Deakin MJ, Nicholls JR. The effect of TBC morphology on the erosion rate of EB PVD TBCs. Wear. 2005;258:349–356.
  • Wellman RG, Nicholls JR, Murphy K. Effect of microstructure and temperature on the erosion rates and mechanisms of modified EB PVD TBCs. Wear. 2009;267:1927–1934.
  • Li C-J, Yang G-J, Ohmori A. Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings. Wear. 2006;260:1166–1172.
  • Tabakoff W. Investigation of coatings at high temperature for use in turbomachinery. Surf Coat Technol. 1989;39/40:97–115.
  • Borom MP, Johnson CA, Peluso LA. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf Coat Technol. 1996;86–87:116–126.
  • Krämer S, Yang J, Levi C, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits. J Am Ceram Soc. 2006;89(10):3167–3175.
  • Mercer C, Faulhaber S, Evans AG, et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesiumalumino- silicate (CMAS) infiltration. Acta Mater. 2005;53:1029–1039.
  • Mechnich P, Braue W, Schulz U. High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay. J Am Ceram Soc. 2011;94(3):925–931.
  • Aw LM, Amendola R, Ryter JW, et al. Investigation of Na2SO4 deposit induced corrosion of Cr, Al, C binary and ternary thin film coatings on Ni-201. J Electrochem Soc 2017;164(6):C218–C223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.