328
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Electrophoretic deposition of hydroxyapatite coating on biodegradable Mg–4Zn–4Sn–0.6Ca–0.5Mn alloy

, , & ORCID Icon
Pages 908-918 | Received 17 May 2019, Accepted 17 Aug 2019, Published online: 05 Sep 2019

References

  • Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–1692.
  • Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 2007;28(13):2163–2174.
  • Hornberger H, Virtanen S, Boccaccini A. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8(7):2442–2455.
  • Salahshoor M, Guo Y. Biodegradable orthopedic magnesium–calcium (MgCa) alloys, processing, and corrosion performance. Materials (Basel). 2012;5(1):135–155.
  • Salunke P, Shanov V, Witte F. High purity biodegradable magnesium coating for implant application. Mater Sci Eng B. 2011;176(20):1711–1717.
  • Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf B. 2012;93:67–74.
  • Wang J, Shaw LL. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials. 2009;30(34):6565–6572.
  • Song G, Atrens A, Wu X, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Sci. 1998;40(10):1769–1791.
  • Bahmani A, Arthanari S, Shin K. Corrosion behavior of Mg–Mn–Ca alloy: influences of Al, Sn and Zn. J Magn Alloys. 2019;7(1):38–46.
  • Riman RE, Suchanek WL, Byrappa K, et al. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics. 2002;151(1–4):393–402.
  • Weng W, Zhang S, Cheng K, et al. Sol–gel preparation of bioactive apatite films. Surf Coat Technol. 2003;167(2–3):292–296.
  • Chew K-K, Zein SHS, Ahmad AL, et al. The electrochemical studies of the corrosion resistance behaviour of hydroxyapatite coatings on stainless steel fabricated by electrophoretic deposition. J Ind Eng Chem. 2013;19:1123–1129.
  • Drevet R, Jaber NB, Fauré J, et al. Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4 V substrates. Surf Coat Technol. 2016;301:94–99.
  • Kumar RM, Kuntal KK, Singh S, et al. Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application. Surf Coat Technol. 2016;287:82–92.
  • Azami M, Tavakol S, Samadikuchaksaraei A, et al. A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci Polym Ed. 2012;23(18):2353–2368.
  • Seyfoori A, Hosseini HM, Fooladi I, et al. Synthesize and Characterization of Hollow Hydroxyapatite Nanopowders with Different Morphologies: Role of Cationic and Non-Ionic Surfactants. Advanced Materials Research. 2014;829:268–273.
  • Mazaheri M, Haghighatzadeh M, Zahedi A, et al. Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics. J Alloys Compd. 2009;471(1–2):180–184.
  • Singh S, Kumar RM, Kuntal KK, et al. Sol–gel derived hydroxyapatite coating on Mg–3Zn alloy for orthopedic application. JOM. 2015;67(4):702–712.
  • Tang H, Xin T, Luo Y, et al. In vitro degradation of AZ31 magnesium alloy coated with hydroxyapatite by sol–gel method. Mater Sci Technol. 2013;29(5):547–552.
  • Rojaee R, Fathi M, Raeissi K. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating. Mater Sci Eng: C. 2013;33(7):3817–3825.
  • Li K, Wang B, Yan B, et al. Preparing Ca–P coating on biodegradable magnesium alloy by hydrothermal method: in vitro degradation behavior. Chin Sci Bull. 2012;57(18):2319–2322.
  • Onoki T, Yamamoto S, Onodera H, et al. New technique for bonding hydroxyapatite ceramics and magnesium alloy by hydrothermal hot-pressing method. Mater Sci Eng: C. 2011;31(2):499–502.
  • Tian Q, Liu H. Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology. 2015;26(17):175102.
  • Gebhardt F, Seuss S, Turhan MC, et al. Characterization of electrophoretic chitosan coatings on stainless steel. Mater Lett. 2012;66(1):302–304.
  • RF L XFX. Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater Lett. 2006;60(21–22):2627–2632.
  • Asl SKF, Nemeth S, Tan MJ. Electrophoretic deposition of hydroxyapatite coatings on AZ31 magnesium substrate for biodegradable implant applications. Prog Cryst Growth Charact Mater. 2014;60(3):74–79.
  • Rojaee R, Fathi M, Raeissi K. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl Surf Sci. 2013;285:664–673.
  • Dorozhkin SV. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014;10(7):2919–2923.
  • Wei M, Ruys AJ, Milthorpe BK, et al. Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition. J Biomed Mater Res. 1999;45(1):11–19.
  • Eliaz N, Sridhar TM. Electrocrystallization of hydroxyapatite and its dependence on solution conditions. Cryst Growth Des. 2008;8(11):3965–3977.
  • Mondragón-Cortez P, Vargas-Gutierrez G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater Lett. 2004;58(7):1336–1339.
  • Javidi M, Javadpour S, Bahrololoom M, et al. Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Mater Sci Eng: C. 2008;28(8):1509–1515.
  • Sarkar P, Nicholson PS. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc. 1996;79(8):1987–2002.
  • Hamaker H. Formation of a deposit by electrophoresis. Trans Faraday Soc. 1940;35:279–287.
  • Meng X, Kwon TY, Yang Y, et al. Effects of applied voltages on hydroxyapatite coating of titanium by electrophoretic deposition. J Biomed Mater Res Part B: Appl Biomater: An Off J Soc Biomater, Jpn Soc Biomater Austral Soc Biomater Korean Soc Biomater. 2006;78(2):373–377.
  • Mondragon-Cortez P, Vargas-Gutierrez G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater Lett. 2004;58(7-8):1336–1339.
  • Razavi M, Fathi M, Savabi O, et al. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Surf Eng. 2014;30(8):545–551.
  • Razavi M, Fathi M, Savabi O, et al. In vitro analysis of electrophoretic deposited fluoridated hydroxyapatite coating on micro-arc oxidized AZ91 magnesium alloy for biomaterials applications. Metall Mater Trans A. 2015;46(3):1394–1404.
  • Zhang J, Dai C, Wei J, et al. Degradable behavior and bioactivity of micro-arc oxidized AZ91D Mg alloy with calcium phosphate/chitosan composite coating in m-SBF. Colloids Surf B. 2013;111:179–187.
  • Rojaee R, Fathi M, Raeissic K, et al. Biodegradation assessment of nanostructured fluoridated hydroxyapatite coatings on biomedical grade magnesium alloy. Ceram Int. 2014;40:15149–15158.
  • Sankar M, Suwas S, Balasubramanian S, et al. Comparison of electrochemical behavior of hydroxyapatite coated onto WE43 Mg alloy by electrophoretic and pulsed laser deposition. Surf Coat Technol. 2017;309:840–848.
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–2915.
  • Jihua C, Zhenhua C, Hongge Y, et al. Effects of Sn and Ca additions on microstructure, mechanical properties, and corrosion resistance of the as-cast Mg–Zn–Al-based alloy. Mater Corros. 2008;59(12):934–941.
  • Rout G, Samantaray S, Das P. Aluminium toxicity in plants: a review. Agronomie. 2001;21(1):3–21.
  • Gu X-N, Zheng Y-F. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4(2):111–115.
  • Park J, Lakes RS. Biomaterials: an introduction. New York: Springer Science & Business Media; 2007.
  • Dudeka K, Goryczka T. Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy. Ceram Int. 2016;42(16):19124–19132.
  • Rad AT, Solati-Hashjin M, Osman NAA, et al. Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceram Int. 2014;40(8):12681–12691.
  • Ma J, Wang C, Peng K-W. Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials. 2003;24(20):3505–3510.
  • Xiao XF, Liu RF. Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater Lett. 2006;60(21–22):2627–2632.
  • Mondragón-Cortez P, Vargas-Gutiérrez G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater Lett. 2004;58:1336–1339.
  • Farrokhi-Rad M, Shahrabi T. Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings. Ceram Int. 2014;40(2):3031–3039.
  • Li M, Liu Q, Jia Z, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon N Y. 2014;67:185–197.
  • Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions. Corros Sci. 1997;39(10–11):1981–2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.