443
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Influence of microstructure of TC4 substrate on the MAO coating

, , , &
Pages 827-836 | Received 19 Jun 2019, Accepted 08 Nov 2019, Published online: 28 Nov 2019

References

  • Khanmohammadi H, Allahkaram SR, Towhidi N, et al. Preparation of PEO coating on Ti6Al4V in different electrolytes and evaluation of its properties. Surf Eng. 2016;32(6):448–456. doi: 10.1179/1743294415Y.0000000083
  • Cho GB, Kim KW, Ahn HJ, et al. Applications of Ti-Ni alloys for secondary batteries. J Alloy Compd. 2008;449:317–321. doi: 10.1016/j.jallcom.2006.01.129
  • Haghighi SE, Lu HB, Jian GY, et al. Effect of α″ martensite on the microstructure and mechanical properties of beta-type T-Fe-Ta alloys. Mater Des. 2015;76:47–54. doi: 10.1016/j.matdes.2015.03.028
  • Palmquist A, Omar OM, Esposito M, et al. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J R Soc Interface. 2010;7(S):515–527.
  • Moin DA, Hassan B, Mercelis P, et al. Designing a novel dental root analogue implant using cone beam computed tomography and CAD/CAM technology. Clin Oral Implan Res. 2013;24:25–27. doi: 10.1111/j.1600-0501.2011.02359.x
  • Chen JY, Zhang ZG, Chen XS, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent. 2014;112:1088–1095. doi: 10.1016/j.prosdent.2014.04.026
  • Liu YJ, Li XP, Zhang LC, et al. Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting. Mater Sci Eng A. 2015;642:268–278. doi: 10.1016/j.msea.2015.06.088
  • Zhang LC, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scr Mater. 2011;65:21–24. doi: 10.1016/j.scriptamat.2011.03.024
  • Julia M, Svea P, Matthias G, et al. Comparison of selective laser melted titanium and magnesium implants coated with PCL. Int J Mol Sci. 2015;16:13287–13301. doi: 10.3390/ijms160613287
  • Yavari SA, Wauthle R, Stok JVD, et al. Fatigue behavior of porous biomaterials manufactured using selective laser melting. Mater Sci Eng C. 2013;33:4849–4858. doi: 10.1016/j.msec.2013.08.006
  • Felgueiras HP, Castanheira L, Changotade S, et al. Biotribocorrosion (tribo-electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture. J Biomed Mater Res Part B. 2014;103:661–669. doi: 10.1002/jbm.b.33236
  • Shin KR, Kim YS, Jeong JH, et al. Pore size effect on cell response via plasma electrolytic oxidation. Surf Eng. 2016;32(6):418–422. doi: 10.1179/1743294415Y.0000000026
  • Oliveira NCM, Moura CCG, Zanetta-Barbosa D, et al. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response. Mater Sci Eng C. 2013;33:1958–1962. doi: 10.1016/j.msec.2013.01.002
  • Oliveira FG, Ribeiro AR, Perez G, et al. Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium. Appl Surf Sci. 2015;341:1–12. doi: 10.1016/j.apsusc.2015.02.163
  • Yao ZP, Li LL, Liu XR, et al. Preparation of ceramic conversion layers containing Ca and P on AZ91D Mg alloys by plasma electrolytic oxidation. Surf Eng. 2010;26(5):317–320. doi: 10.1179/174329409X409341
  • Kubo K, Tsukimura N, Iwasa F, et al. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials. 2009;30:5319–5329. doi: 10.1016/j.biomaterials.2009.06.021
  • Zhao LZ, Mei SL, Chu PK, et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–5082. doi: 10.1016/j.biomaterials.2010.03.014
  • Gu YH, Chen LL, Wen Y, et al. Corrosion behavior and mechanism of MAO coated Ti6Al4 V with a grain-fined surface layer. J Alloy Compd. 2016;664:770–776. doi: 10.1016/j.jallcom.2015.12.108
  • Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 2014;76:13–22. doi: 10.1016/j.actamat.2014.05.022
  • Attar H, Prashanth KG, Chaubey AK, et al. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142:38–41. doi: 10.1016/j.matlet.2014.11.156
  • Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4 V by micro-arc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces. 2016;8(28):17964–17975. doi: 10.1021/acsami.6b05893
  • Alghamdi H, Bosco R, van den Beucken JJ, et al. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials. 2013;34:3747–3757. doi: 10.1016/j.biomaterials.2013.02.033
  • Yavari SA, Necula BS, Fratila-Apachitei LE, et al. Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surf Eng. 2016;32(6):411–417. doi: 10.1179/1743294415Y.0000000101
  • Sawada R, Kono K, Isama K, et al. Calcium-incorporated titanium surfaces influence the osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Part A. 2013;101:2573–2585. doi: 10.1002/jbm.a.34566
  • Wu GL, Wang Y, Liu JH, et al. Influence of the Ti alloy substrate on the anodic oxidation in an environmentally-friendly electrolyte. Surf Coat Technol. 2018;344:680–688. doi: 10.1016/j.surfcoat.2018.04.001
  • Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res Part A. 1990;24(6):721–734. doi: 10.1002/jbm.820240607
  • Oyane A, Kim HM, Furuya T, et al. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res Part A. 2003;65(2):188–195. doi: 10.1002/jbm.a.10482
  • Oyane A, Onuma K, Ito A, et al. Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res Part A. 2003;62:339–348. doi: 10.1002/jbm.a.10426
  • Yang JJ, Yu HC, Yin J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Des. 2016;108:308–318. doi: 10.1016/j.matdes.2016.06.117
  • Attar H, Calin M, Zhang LC, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A. 2014;593:170–177. doi: 10.1016/j.msea.2013.11.038
  • Rokosz K, Hryniewicz T, Gaiaschi S, et al. Characterisation of calcium- and phosphorus-enriched porous coatings on cp titanium grade 2 fabricated by plasma electrolytic oxidation. Metals. 2017;7:354–362. doi: 10.3390/met7090354
  • Song WH, Jun YK, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials. 2004;25(17):3341–3349. doi: 10.1016/j.biomaterials.2003.09.103
  • Razavi M, Fathi M, Savabi O, et al. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Sur Eng. 2014;30(8):545–551. doi: 10.1179/1743294414Y.0000000284
  • Troughton SC, Nominé A, Dean J, et al. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings. Appl Surf Sci. 2016;389:260–269. doi: 10.1016/j.apsusc.2016.07.106
  • Hussein RO, Nie X, Northwood DO, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J Phys D Appl Phys. 2010;43(10):105203–105216. doi: 10.1088/0022-3727/43/10/105203
  • Mi T, Jiang BL, Liu Z, et al. Plasma formation mechanism of microarc oxidation. Electrochim Acta. 2014;123:369–377. doi: 10.1016/j.electacta.2014.01.047
  • Fatimah S, Yang HW, Kamil MP, et al. Control of surface plasma discharge considering the crystalline size of Al substrate. Appl Surf Sci. 2019;477:60–70. doi: 10.1016/j.apsusc.2017.12.208
  • Gu YH, Chen LL, Yue W, et al. Corrosion behavior and mechanism of MAO coated Ti6Al4 V with a grain-fined surface layer. J Alloys Compd. 2016;664:770–776. doi: 10.1016/j.jallcom.2015.12.108
  • Yao JH, Wang Y, Wu GL, et al. Growth characteristics and properties of micro-arc oxidation coating on SLM-produced TC4 alloy for biomedical applications. Appl Surf Sci. 2019;479:727–737. doi: 10.1016/j.apsusc.2019.02.142
  • Yang JJ, Yu HC, Yin J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Des. 2016;108:308–318. doi: 10.1016/j.matdes.2016.06.117
  • Krakhmalev P, Fredriksson G, Yadroitsava I, et al. Deformation behavior and microstructure of Ti6Al4V manufactured by SLM. Phys Procedia. 2016;83:778–788. doi: 10.1016/j.phpro.2016.08.080
  • Yin X, Wang Y, Liu B, et al. Effects of the grain boundary on phase structure and surface morphology of TiO2 films prepared by MAO technology. Surf Interface Anal. 2012;44(3):276–281. doi: 10.1002/sia.3792
  • Kamil MP, Kaseem M, Ko YG. Soft plasma electrolysis with complex ions for optimizing electrochemical performance. Sci Rep. 2017;7:44458–44473. doi: 10.1038/srep44458
  • Reshadi F, Faraji G, Baniassadi M, et al. Surface modification of severe plastically deformed ultrafine grained pure titanium by plasma electrolytic oxidation. Surf Coat Technol. 2017;316:113–121. doi: 10.1016/j.surfcoat.2017.03.016
  • Yao ZQ, Ivanisenko Y, Diemant T, et al. Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater. 2010;6(7):2816–2825. doi: 10.1016/j.actbio.2009.12.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.