758
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

MWCNTs polyurethane sponges with enhanced super-hydrophobicity for selective oil–water separation

, , &
Pages 651-659 | Received 24 Sep 2019, Accepted 28 Dec 2019, Published online: 08 Jan 2020

References

  • Peterson CH, Rice SD, Short JW, et al. Long-term ecosystem response to the Exxon Valdez oil spill. Science. 2003;302:2082–2086. doi: 10.1126/science.1084282
  • Dalton T, Jin D. Extent and frequency of vessel oil spills in US marine protected areas. Mar Pollut Bull. 2010;60:1939–1945. doi: 10.1016/j.marpolbul.2010.07.036
  • Aurell J, Gullett BK. Aerostat sampling of PCDD/PCDF emissions from the Gulf Oil spill in situ burns. Environ Sci Technol. 2010;44:9431–9437. doi: 10.1021/es103554y
  • Broje V, Keller AA. Effect of operational parameters on the recovery rate of an oleophilic drum skimmer. J Hazard Mater. 2007;148:136–143. doi: 10.1016/j.jhazmat.2007.02.017
  • Broje V, Keller AA. Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol. 2006;40:7914–7918. doi: 10.1021/es061842m
  • Ge J, Zhao H-Y, Zhu H-W, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv Mater. 2016;28:10459–10490. doi: 10.1002/adma.201601812
  • Barry E, Mane AU, Libera JA, et al. Advanced oil sorbents using sequential infiltration synthesis. J Mater Chem A. 2017;5:2929–2935. doi: 10.1039/C6TA09014A
  • Ma Q, Cheng H, Fane AG, et al. Recent development of advanced materials with special wettability for selective oil/water separation. Small. 2016;12:2186–2202. doi: 10.1002/smll.201503685
  • Wang B, Liang W, Guo Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44:336–361. doi: 10.1039/C4CS00220B
  • Bayat A, Aghamiri SF, Moheb A, et al. Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol. 2005;28:1525–1528. doi: 10.1002/ceat.200407083
  • Tsai C-K, Liao C-Y, Wang HP, et al. Pyrolysis of spill oils adsorbed on zeolites with product oils recycling. Mar Pollut Bull. 2008;57:895–898. doi: 10.1016/j.marpolbul.2008.02.041
  • Chen J, Zhang Y, Chen C, et al. Cellulose sponge with superhydrophilicity and high oleophobicity both in air and under water for efficient oil–water emulsion separation. Macromol Mater Eng. 2017;302:1700086. doi: 10.1002/mame.201700086
  • Radetic MM, Jocic DM, Jovancic PM, et al. Recycled wool-based nonwoven material as an oil sorbent. Environ Sci Technol. 2003;37:1008–1012. doi: 10.1021/es0201303
  • Adebajo MO, Frost RL, Kloprogge JT, et al. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mat. 2003;10:159–170. doi: 10.1023/A:1027484117065
  • Li L, Li B, Sun H, et al. Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. J Mater Chem A. 2017;5:14858–14864. doi: 10.1039/C7TA03511J
  • Nguyen DD, Tai N-H, Lee S-B, et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci. 2012;5:7908–7912. doi: 10.1039/c2ee21848h
  • Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater. 2012;22:4421–4425. doi: 10.1002/adfm.201200888
  • Wang D, Li D, Lv P, et al. Deposition of polytetrafluoroethylene nanoparticles on graphene oxide/polyester fabrics for oil adsorption. Surf Eng. 2019;35:426–434. doi: 10.1080/02670844.2018.1447271
  • Gui X, Wei J, Wang K, et al. Carbon nanotube sponges. Adv Mater. 2010;22:617–621. doi: 10.1002/adma.200902986
  • Zhu D, Handschuh-Wang S, Zhou X. Recent progress in fabrication and application of polydimethylsiloxane sponges. J Mater Chem A. 2017;5:16467–16497. doi: 10.1039/C7TA04577H
  • Zhang J, Meng Z, Liu J, et al. Breath figure lithography for the construction of a hierarchical structure in sponges and their applications to oil/water separation. J Mater Chem A. 2017;5:16369–16375. doi: 10.1039/C7TA02751F
  • Calcagnile P, Fragouli D, Bayer IS, et al. Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano. 2012;6:5413–5419. doi: 10.1021/nn3012948
  • Qiu S, Li Y, Li G, et al. Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustain Chem Eng. 2019;7:5560–5567. doi: 10.1021/acssuschemeng.9b00098
  • Zhang L, Xu L, Sun Y, et al. Robust and durable superhydrophobic polyurethane sponge for oil/water separation. Ind Eng Chem Res. 2016;55:11260–11268. doi: 10.1021/acs.iecr.6b02897
  • Tian Q, Liu Q, Zhou J, et al. Superhydrophobic sponge containing silicone oil-modified layered double hydroxide sheets for rapid oil-water separations. Colloids and Surfaces A. 2019;570:339–346. doi: 10.1016/j.colsurfa.2019.03.031
  • Wang Y, Chen A, Peng M, et al. Preparation and characterization of a fluorizated kaolinemodified melamine sponge as an absorbent for efficient and rapid oil/water separation. J Clean Prod. 2019;217:308–316. doi: 10.1016/j.jclepro.2019.01.253
  • Li M, Bian C, Yang G, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion. Chem Eng J. 2019;368:350–358. doi: 10.1016/j.cej.2019.02.176
  • Li J, Xu C, Zhang Y, et al. Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J Mater Chem A. 2016;4:15546–15553. doi: 10.1039/C6TA07535E
  • Xia C, Li Y, Fei T, et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxidecoated polyurethane sponge at the presence of ethanol for oil-water separation. Chem Eng J. 2018;345:648–658. doi: 10.1016/j.cej.2018.01.079
  • Rahmani Z, Samadi MT, Kazemi A, et al. Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J Environ Chem Eng. 2017;5:5025–5032. doi: 10.1016/j.jece.2017.09.028
  • Cheng Q, Liu C, Liu S. Fabrication of a robust superhydrophobic polyurethane sponge for oil–water separation. Surf Eng. 2019;35:403–410. doi: 10.1080/02670844.2018.1429204
  • Shuai Q, Yang X, Luo Y, et al. A superhydrophobic poly(dimethylsiloxane)-TiO2 coated polyurethane sponge for selective absorption of oil from water. Mater Chem Phys. 2015;162:94–99. doi: 10.1016/j.matchemphys.2015.05.011
  • Cao N, Yang B, Barras A, et al. Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chem Eng J. 2017;307:319–325. doi: 10.1016/j.cej.2016.08.105
  • Zhang X, Zhi D, Zhu W, et al. Facile fabrication of durable superhydrophobic SiO2/polyurethane composite sponge for continuous separation of oil from water. RSC Adv. 2017;7:11362–11366. doi: 10.1039/C7RA00020K
  • Wang Z, Yang W, Sun F. Construction of a superhydrophobic coating using triethoxyvinylsilane-modified silica nanoparticles. Surf Eng. 2019;35:418–425. doi: 10.1080/02670844.2018.1446575
  • De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539. doi: 10.1126/science.1222453
  • Maiti UN, Lee WJ, Lee JM, et al. 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv Mater. 2014;26:40–67. doi: 10.1002/adma.201303265
  • Yan Y, Miao J, Yang Z, et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem Soc Rev. 2015;44:3295–3346. doi: 10.1039/C4CS00492B
  • Ji Y, Huang L, Hu J, et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ Sci. 2015;8:776–789. doi: 10.1039/C4EE03749A
  • Geier ML, McMorrow JJ, Xu W, et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat Nanotechnol. 2015;10:944–948. doi: 10.1038/nnano.2015.197
  • Sahoo B, Narsimhachary D, Paul J. Surface mechanical and self-lubricating properties of MWCNT impregnated aluminium surfaces. Surf Eng. 2019;35:970–981. doi: 10.1080/02670844.2019.1584959
  • Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1:180–192. doi: 10.1002/smll.200400118
  • Kim JH, Fu K, Choi J, et al. Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium–sulfur batteries. Chem Commun. 2015;51:13682–13685. doi: 10.1039/C5CC04103A
  • Chen B, Lv Z, Guo F. Integrated CNTs/SiO2 nano-additives on SBS polymeric superhydrophobic coatings for self-cleaning. Surf Eng. 2019. https://doi.org/10.1080/02670844.2019.1650456.
  • Ling X-L, Wei Y-Z, Zou L-M, et al. Preparation and characterization of hydroxylated multi-walled carbon nanotubes. Colloids Surf A. 2013;421:9–15. doi: 10.1016/j.colsurfa.2012.12.046
  • Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem. 2009;19:4632–4638. doi: 10.1039/b901421g
  • Hou S, Su S, Kasner ML, et al. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett. 2010;501:68–74. doi: 10.1016/j.cplett.2010.10.051
  • Yuen S-M, Ma C-CM, Chiang C-L, et al. Silane-modified MWCNT/PMMA composites – preparation, electrical resistivity, thermal conductivity and thermal stability. Composites: Part A. 2007;38:2527–2535. doi: 10.1016/j.compositesa.2007.07.015
  • Qu R, Wang X, Wang Z, et al. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater. 2014;275:89–98. doi: 10.1016/j.jhazmat.2014.04.051
  • Lin B, Chen J, Li Z-T, et al. Superhydrophobic modification of polyurethane sponge for the oil-water separation. Surf Coat Tech. 2019;359:216–226. doi: 10.1016/j.surfcoat.2018.12.054
  • Zhu X, Zhang K, Wang C, et al. Quantitative determination and toxicity evaluation of 2,4-dichlorophenol using poly(eosin Y)/hydroxylated multi-walled carbon nanotubes modified electrode. Sci Rep. 2016;6:38657. doi: 10.1038/srep38657
  • Chen Q, de Leon A, Advincula RC. Inorganic−organic thiol−ene coated mesh for oil/water separation. ACS Appl Mater Interfaces. 2015;7:18566–18573. doi: 10.1021/acsami.5b04980
  • Li X-M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev. 2007;36:1350–1368. doi: 10.1039/b602486f
  • Ge M, Cao C, Huang J, et al. Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horiz. 2018;3:235–260. doi: 10.1039/C7NH00185A
  • Zhang L, Li H, Lai X, et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J. 2017;316:736–743. doi: 10.1016/j.cej.2017.02.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.