389
Views
33
CrossRef citations to date
0
Altmetric
Research Articles

Perspectives in corrosion-performance of Ni–Cu coatings by adding Y2O3 nanoparticles

, ORCID Icon, , &
Pages 226-235 | Received 17 Aug 2019, Accepted 08 Jan 2020, Published online: 23 Jan 2020

References

  • Goranova D, Avdeev G, Rashkov R. Electrodeposition and characterization of Ni–Cu alloys. Surf Coat Technol. 2014;240:204–210. doi: 10.1016/j.surfcoat.2013.12.014
  • Lee SH, Lee DW, Lim KJ, et al. Copper–Nickel alloy plating to improve the contact resistivity of metal grid on silicon heterojunction solar cells. Electron Mater Lett. 2019;15:314–322. doi: 10.1007/s13391-019-00134-x
  • Pellicer E, Varea A, Pané S, et al. A comparison between fine-grained and nanocrystalline electrodeposited Cu–Ni films. Insights on mechanical and corrosion performance. Surf Coat Technol. 2011;205:5285–5293. doi: 10.1016/j.surfcoat.2011.05.047
  • Alizadeh M, Safaei H. Characterization of Ni-Cu matrix, Al2O3 reinforced nano-composite coatings prepared by electrodeposition. Appl Surf Sci. 2018;456:195–203. doi: 10.1016/j.apsusc.2018.06.095
  • Ghosh SK, Dey GK, Dusane RO, et al. Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni–Cu alloys in 3.0 wt.% NaCl solution. J Alloys Compd. 2006;426:235–243. doi: 10.1016/j.jallcom.2005.12.094
  • Ghosh SK, Limaye PK, Swain BP, et al. Tribological behaviour and residual stress of electrodeposited Ni/Cu multilayer films on stainless steel substrate. Surf Coat Technol. 2007;201:4609–4618. doi: 10.1016/j.surfcoat.2006.09.314
  • Koivuluoto H, Milanti A, Bolelli G, et al. High-pressure cold-sprayed Ni and Ni-Cu coatings: improved structures and corrosion properties. J Therm Spray Techn. 2014;23:98–103. doi: 10.1007/s11666-013-0016-7
  • Dai PQ, Zhang C, Wen JC, et al. Tensile properties of electrodeposited nanocrystalline Ni-Cu alloys. J Mater Eng Perform. 2016;25:594–600. doi: 10.1007/s11665-016-1881-2
  • Sarac U, Baykul MC. Morphological and microstructural properties of two-phase Ni–Cu films electrodeposited at different electrolyte temperatures. J Alloys Compd. 2013;552:195–201. doi: 10.1016/j.jallcom.2012.10.071
  • Ghosh SK, Limaye PK, Bhattacharya S, et al. Effect of Ni sublayer thickness on sliding wear characteristics of electrodeposited Ni/Cu multilayer coatings. Surf Coat Technol. 2007;201:7441–7448. doi: 10.1016/j.surfcoat.2007.02.014
  • Rafiei M, Shamanian M, Salehi M, et al. Improvement in oxidation behaviour of steel by B4C–TiB2–TiC–Ni coating. Surf Eng. 2014;30:791–795. doi: 10.1179/1743294414Y.0000000312
  • Ru J, Jia Y, Jiang Y, et al. Modification of ZTA particles with Ni coating by electroless deposition. Surf Eng. 2017;33:353–361. doi: 10.1080/02670844.2016.1248119
  • Xiao C. Properties of nano-SiC/Ni composite coating on diamond surfaces. Surf Eng. 2018;34:832–837. doi: 10.1080/02670844.2017.1376847
  • Arghavanian R, Bostani B, Parvini-Ahmadi N. Characterisation of coelectrodeposited Ni–Al composite coating. Surf Eng. 2015;31:189–193. doi: 10.1179/1743294414Y.0000000339
  • Jiang JB, Zhang L, Zhong QD, et al. Preparation and characterisation of nickel–nano-B4C composite coatings. Surf Eng. 2012;28:612–619. doi: 10.1179/1743294412Y.0000000038
  • Huang JM, Li Y, Zhang GF, et al. Electroplating of Ni–ZrO2 nanocomposite coatings on 40CrNiMo7 alloy. Surf Eng. 2013;29:194–199. doi: 10.1179/1743294412Y.0000000108
  • Arghavanian R, Parvini Ahmadi N. Electrodeposition of Ni–ZrO2 composite coatings and evaluation of particle distribution and corrosion resistance. Surf Eng. 2011;27:649–654. doi: 10.1179/1743294410Y.0000000002
  • Zhang Z, Wu X, Jiang C, et al. Electrodeposition of Ni matrix composite coatings containing ZrC particles. Surf Eng. 2014;30:21–25. doi: 10.1179/1743294413Y.0000000185
  • Borkar T, Harimkar S. Microstructure and wear behaviour of pulse electrodeposited Ni–CNT composite coatings. Surf Eng. 2011;27:524–530. doi: 10.1179/1743294410Y.0000000001
  • Aruna S, Srinivas G. Wear and corrosion resistant properties of electrodeposited Ni composite coating containing Al2O3–TiO2 composite powder. Surf Eng. 2015;31:708–713. doi: 10.1179/1743294415Y.0000000050
  • Ji P, Long R, Hou L, et al. Study on hydrophobicity and wettability transition of Ni-Cu-SiC coating on Mg-Li alloy. Surf Coat Technol. 2018;350:428–435. doi: 10.1016/j.surfcoat.2018.07.038
  • Cui X, Wei W, Liu H, et al. Electrochemical study of codeposition of Al particle—nanocrystalline Ni/Cu composite coatings. Electrochim Acta. 2008;54:415–420. doi: 10.1016/j.electacta.2008.07.066
  • Li B, Mei T, Li D, et al. Structural and corrosion behavior of Ni-Cu and Ni-Cu/ZrO2 composite coating electrodeposited from sulphate-citrate bath at low Cu concentration with additives. J Alloys Compd. 2019;804:192–201. doi: 10.1016/j.jallcom.2019.06.381
  • Safavi MS, Babaei F, Ansarian A, et al. Incorporation of Y2O3 nanoparticles and glycerol as an appropriate approach for corrosion resistance improvement of Ni-Fe alloy coatings. Ceram Int. 2019;45:10951–10960. doi: 10.1016/j.ceramint.2019.02.177
  • Fathi M, Safavi MS, Mirzazadeh S, et al. A promising horizon in mechanical and corrosion properties improvement of Ni-Mo coatings through incorporation of Y2O3 nanoparticles. Metall Mater Trans A. 2020;51:897–908. doi: 10.1007/s11661-019-05559-5
  • Safavi MS, Etminanfar M. A review on the prevalent fabrication methods, microstructural, mechanical properties, and corrosion resistance of nanostructured hydroxyapatite containing bilayer and multilayer coatings used in biomedical applications. J Ultrafine Grained Nanostruct Mater. 2019;52:1–17.
  • Safavi MS, Rasooli A. Ni-P-TiO2 nanocomposite coatings with uniformly dispersed Ni3Ti intermetallics: effects of TiO2 nanoparticles concentration. Surf Eng. 2019;35:1070–1080. doi: 10.1080/02670844.2018.1564475
  • Safavi MS, Rasooli A. Ni-P-TiO2 nanocomposite coatings with uniformly dispersed Ni3Ti intermetallics: effects of current density and post heat treatment. Surf Coat Technol. 2019;372:252–259. doi: 10.1016/j.surfcoat.2019.05.058
  • Sekar R, Jagadesh K, Ramesh Bapu G. Electrodeposition and characterisation of copper deposits from non-cyanide electrolytes. Surf Eng. 2015;31:433–438. doi: 10.1179/1743294414Y.0000000400
  • Ning D, Zhang A, Wu H. Cu-TiO2 composites with high incorporated and uniform distributed TiO2 particles prepared by jet electrodeposition. Surf Eng. 2019;35:1048–1054. doi: 10.1080/02670844.2019.1598024
  • Kim MJ, Kim JS, Kim DJ, et al. Effects of current density and agitation on co-deposition behaviour of electrodeposited Ni–TiO2 composite coating. Surf Eng. 2015;31:673–678. doi: 10.1179/1743294415Y.0000000029
  • Boroujerdnia M, Ghayour H, Monshi A, et al. Electroplating of Ni/Co–pumice multilayer nanocomposite coatings: effect of current density on crystal texture transformations and corrosion behavior. Int J Min Met Mater. 2019;26:1299–1310. doi: 10.1007/s12613-019-1833-6
  • To S, Zhu YH, Lee WB, et al. Effects of current density on electropulsing-induced phase transformations in a Zn–Al based alloy. Appl Phys A. 2009;96:939–944. doi: 10.1007/s00339-009-5100-y
  • Safavi MS, Tanhaei M, Ahmadipour MF, et al. Electrodeposited Ni-Co alloy-particle composite coatings: a comprehensive review. Surf Coat Technol. 2020;382:125153. doi: 10.1016/j.surfcoat.2019.125153
  • Abed FA. Deposition of Ni–CO/TiO2 nanocomposite coating by electroplating. Int J Adv Res. 2015;3:241–246.
  • Abou-Krisha MM. Effect of pH and current density on the electrodeposition of Zn–Ni–Fe alloys from a sulfate bath. J Coat Technol Res. 2012;9:775–783. doi: 10.1007/s11998-012-9402-1
  • Sarac U, Öksüzoğlu RM, Baykul MC. Deposition potential dependence of composition, microstructure, and surface morphology of electrodeposited Ni–Cu alloy films. J Mater Sci: Mater Electron. 2012;23:2110–2116.
  • Shetty AR, Hegde AC. Electrofabrication of Ni-Co-CNT composite coatings for hydrogen energy. Nano Hybrids Composites. 2017;17:149–155. doi: 10.4028/www.scientific.net/NHC.17.149
  • Abou-Krisha M, Assaf F, El-Naby S. Electrodeposition and characterization of zinc–nickel–iron alloy from sulfate bath: influence of plating bath temperature. J Solid State Electr. 2009;13:879–885. doi: 10.1007/s10008-008-0620-5
  • Wang S, Guo X, Yang H, et al. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid. Appl Surf Sci. 2014;288:530–536. doi: 10.1016/j.apsusc.2013.10.065
  • Ghosh SK, Grover AK, Dey GK, et al. Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf Coat Technol. 2000;126:48–63. doi: 10.1016/S0257-8972(00)00520-X
  • Beltowska-Lehman E. Electrodeposition of protective Ni–Cu–Mo coatings from complex citrate solutions. Surf Coat Technol. 2002;151:440–443. doi: 10.1016/S0257-8972(01)01613-9
  • Mizushima I, Chikazawa M, Watanabe T. Microstructure of electrodeposited Cu-Ni binary alloy films. J Electrochem Soc. 1996;143:1978–1983. doi: 10.1149/1.1836935
  • Burkert A, Klapper H, Lehmann J. Novel strategies for assessing the pitting corrosion resistance of stainless steel surfaces. Mater Corros. 2013;64:675–682. doi: 10.1002/maco.201206749
  • Grilli R, Watts JF, Baker MA, et al. Localised corrosion on 2219 aluminium alloy coated with a titanium based conversion coating. Surf Interface Anal. 2010;42:610–615. doi: 10.1002/sia.3318
  • Hong MS, Park Y, Kim JG, et al. Effect of incorporating MoS2 in organic coatings on the corrosion resistance of 316L stainless steel in a 3.5% NaCl solution. Coatings. 2019;9:45–57. doi: 10.3390/coatings9010045
  • Calabrese L, Bonaccorsi L, Caprì A, et al. Electrochemical behavior of hydrophobic silane–zeolite coatings for corrosion protection of aluminum substrate. J Coat Technol Res. 2014;11:883–898. doi: 10.1007/s11998-014-9597-4
  • Zadeh K, Shakoor R, Radwan AB. Structural and electrochemical properties of electrodeposited Ni–P nanocomposite coatings containing mixed ceramic oxide particles. Int J Electrochem SC. 2016;11:7020–7030. doi: 10.20964/2016.08.42
  • Arghavanian R, Ahmadi NP, Yazdani S, et al. Investigations on corrosion proceeding path and EIS of Ni–ZrO2 composite coating. Surf Eng. 2012;28:508–512. doi: 10.1179/1743294412Y.0000000010
  • Lin ZF, Zhang D, Wang Y, et al. A zinc/silicon dioxide composite film: fabrication and anti-corrosion characterization. Mater Corros. 2012;63:416–420. doi: 10.1002/maco.201005974
  • Luo F, Li Q, Zhong XK, et al. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate. Mater Corros. 2012;63:148–154. doi: 10.1002/maco.201005706
  • Alishahi M, Hosseini SM, Monirvaghefi SM, et al. Synthesis and passivation behavior of electroless Ni–P-CNT composite coating. Mater Corros. 2013;64:212–217. doi: 10.1002/maco.201106136
  • Hasannejad H, Shahrabi T, Jafarian M. Synthesis and properties of high corrosion resistant Ni–cerium oxide nano-composite coating. Mater Corros. 2013;64:1104–1113. doi: 10.1002/maco.201106484
  • Chang LL, Zhang RJ. Corrosion behaviour of electrodeposited Ni/Al2O3 composite coating covered with a NaCl salt film at 800° C. Mater Corros. 2011;62(10):920–925. doi: 10.1002/maco.200905617
  • Faraji S, Rahim AA, Mohamed N, et al. Effect of SiC on the corrosion resistance of electroless Cu–P–SiC composite coating. J Coat Technol Res. 2012;9:115–124. doi: 10.1007/s11998-010-9295-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.