334
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Fluoropolymer adhered bioinspired hydrophobic, chemically durable cotton fabric for dense liquid removal and self-cleaning application

, , & ORCID Icon
Pages 299-307 | Received 24 Jul 2019, Accepted 16 Mar 2020, Published online: 24 Mar 2020

References

  • Wang S, Jiang L. Definition of superhydrophobic states. Adv Mater. 2007;19(21):3423–3424. doi: 10.1002/adma.200700934
  • Roach P, Shirtcliffe NJ, Newton MI. Progress in superhydrophobic surface development. Soft Matter. 2008;4:224–240. doi: 10.1039/B712575P
  • Xiao F, Yuan S, Liang B, et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion. J Mater Chem. 2015;3:4374–4388. doi: 10.1039/C4TA05730A
  • Wu C, Liu Q, Liu J. Hierarchical flower like double-layer superhydrophobic films fabricated on AZ31 for corrosion protection and self-cleaning. New J Chem. 2017;41:12767–12776. doi: 10.1039/C7NJ02684F
  • Yang Z, Wang L, Sun W, et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl Surf Sci. 2017;401:146–155. doi: 10.1016/j.apsusc.2017.01.009
  • Xu C, Song F, Wang X, et al. Surface modification with hierarchical CuO arrays toward a flexible, durable superhydrophobic and self-cleaning material. Chem Eng J. 2017;313:1328–1334. doi: 10.1016/j.cej.2016.11.024
  • Wang L, Gong Q, Zhan S, et al. Robust anti-icing performance of a flexible duperhydrophobic surface. Adv Mater. 2016;28:7729–7735. doi: 10.1002/adma.201602480
  • Zhang H, Lamb RN. Superhydrophobic treatment for textiles via engineering nanotextured silica/polysiloxane hybrid material onto fibres. Surf. Eng. 2009;25(1):21–24. doi: 10.1179/174329408X271390
  • Shang Y, Si Y, Raza A, et al. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale. 2012;4:7847–7854. doi: 10.1039/c2nr33063f
  • Cheng Q, Liu C, Liu S. Fabrication of a robust superhydrophobic polyurethane sponge for oil–water separation. Surf Eng. 2018;35:403–410. doi: 10.1080/02670844.2018.1429204
  • Cheng M, Song M, Dong H, et al. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings. Small. 2015;11:1665–1671. doi: 10.1002/smll.201402618
  • Zhang XF, Chen RJ, Liu YH, et al. Electrochemically generated sol–gel films as inhibitor containers of superhydrophobic surfaces for the active corrosion protection of metals. J Mater Chem A. 2016;4:649–656. doi: 10.1039/C5TA07443F
  • Solga A, Cerman Z, Striffler BF, et al. The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2007;2(4):126–134. doi: 10.1088/1748-3182/2/4/S02
  • Gao X, Jiang L. Water-repellent legs of water striders. Nature. 2004;432:36. doi: 10.1038/432036a
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material.”. Angew Chem, Int Ed. 2005;44(22):3358–3393. doi: 10.1002/anie.200460587
  • Yue-Kun L, Chen Z, Lin CJ. Recent progress on the superhydrophobic surfaces with special adhesion: from natural to biomimetic to functional. J. Nanoeng Nanomanufac. 2011;1:18–34. doi: 10.1166/jnan.2011.1007
  • Sudarshan TS. New horizons in surface engineering of textiles. Surf Eng. 2003;19(1):1–3. doi: 10.1179/026708403321825315
  • Hoefnagels HF, Wu D, With GD, et al. Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir. 2007;23:13158–13163. doi: 10.1021/la702174x
  • Wang H, Fang J, Cheng T, et al. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun. 2008;7:877–879. doi: 10.1039/B714352D
  • Bae G, Min B, Jeong Y, et al. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J Colloid Interface Sci. 2009;337(1):170–175. doi: 10.1016/j.jcis.2009.04.066
  • Zhao Y, Xu ZG, Wang XG, et al. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabric. Langmuir. 2012;28:6328–6335. doi: 10.1021/la300281q
  • Li SH, Xie HB, Zhang SB, et al. Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem. Commun. 2007;46:4857–4859. doi: 10.1039/b712056g
  • Nystrom D, Lindqvist J, Ostmark E, et al. Superhydrophobic bio-fibre surfaces. Chem Commun. 2006;34:3594–3596. doi: 10.1039/B607411A
  • Li GZ, Wang HT, Wang YX, et al. A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblock azide copolymers. Polymer . 2010;51:1940. doi: 10.1016/j.polymer.2010.03.002
  • Ma ML, Mao Y, Gupta M, et al. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules. 2005;38(23):9742–9748. doi: 10.1021/ma0511189
  • Yang SH, Liu CH, Hsu WT, et al. Preparation of super-hydrophobic films using pulsed hexafluorobenzene plasma. Surf Coat Technol. 2009;203(10):1379–1383. doi: 10.1016/j.surfcoat.2008.11.007
  • Liu Y, Xin JH, Choi CH. Cotton fabrics with single-faced superhydrophobicity. Langmuir. 2012;28:17426–17434. doi: 10.1021/la303714h
  • Holmquist H, Schellenberger S, Cousins S, et al. Properties performance and associate hazards of state of the art durable water repellent (DWR) chemistry for textile finishing. Environ Int. 2016;16:251–264. doi: 10.1016/j.envint.2016.02.035
  • Wang S, Russo T, Qiao GG. Admicellar polymerization of styrene with divinyl benzene on alumina particles: the synthesis of white reinforcing fillers. J Mater Sci. 2006;41:7474–7482. doi: 10.1007/s10853-006-0788-y
  • Pongprayoon T, Yanumet N, O’Rear EA. Admicellar polymerization of styrene on cotton. J Colloid Interf Sci. 2002;249:227–234. doi: 10.1006/jcis.2002.8230
  • Pal S, Mondal S, Maity J. Design and fabrication of thin polymer coating on cotton fabric surface to impart hydrophobicity: an admicellar polymerization approach. Int J Polym Anal Charact. 2018;24:32–39. doi: 10.1080/1023666X.2018.1514707
  • Karlsson PM, Esbjörnsson NB, Holmberg K. Admicellar polymerization of methyl methacrylate on aluminum pigments. J Colloid Interface Sci. 2009;337:364–368. doi: 10.1016/j.jcis.2009.05.053
  • Barraza HJ, Hwa MJ, Blakley K, et al. Wetting behavior of elastomer-modified glass fibers. Langmuir. 2001;17:5288–5296. doi: 10.1021/la010207l
  • Deng B, Cai R, Yu Y, et al. Laundering durability of superhydrophobic cotton fabric. Adv Mater. 2010;22:5473–5477. doi: 10.1002/adma.201002614
  • Mondal S, Pal S, Chaudhuri A, et al. Fabrication of fluoropolymer-modified hydrophobic functionalization of cotton fabric by admicellar polymerization. J Textile Institute. 2019;110(12):1747–1754. doi: 10.1080/00405000.2019.1618630
  • Mondal S, Pal S, Maity J. Transparent and double sided hydrophobic functionalization of cotton fabric by surfactant-assisted admicellar polymerization of fluoromonomers. New J Chem. 2018;42:6831–6838. doi: 10.1039/C8NJ00019K
  • Howarter JA, Genson KL, Youngblood JP. Wetting behavior of oleophobic polymer coatings synthesized from fluorosurfactant-macromers,. ACS Appl Mater Interfaces. 2011;36:2022–2030. doi: 10.1021/am200255v
  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8. doi: 10.1007/s004250050096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.