278
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Cr3C2 content on microstructure and properties of 310 stainless steel coating by PTA welding

, &
Pages 464-471 | Received 03 Mar 2020, Accepted 14 Apr 2020, Published online: 04 May 2020

References

  • Yang XC, Li GL, Wang HD, et al. Effect of flame remelting on microstructure and wear behaviour of plasma sprayed NiCrBSi-30%Mo coating. Surf Eng. 2016;34:1–7.
  • Saida K, Okabe Y, Hata K. Hot cracking behavior and susceptibility of extra high purity type 310 stainless steels. Sci Technol Weld Joining. 2010;15:87–96. doi: 10.1179/136217109X12590746472454
  • Stott FH, Wei FI. High temperature oxidation of commercial austenitic stainless steels. Mater Sci Technol. 1989;5:1140–1147. doi: 10.1179/mst.1989.5.11.1140
  • Xu BS, Liu SC, Dong ZJ, et al. Technical manual of surface engineering. Beijing: Chemical Industry Press; 2009.
  • Ravikumar S, Tong SX, et al. Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding. Wear. 2017;376–377:1720–1727. doi: 10.1016/j.wear.2017.01.027
  • Yung D, Zikin A, Hussainova I, et al. Tribological performances of ZrC-Ni and TiC-Ni cermet reinforced PTA hardfacings at elevated temperatures. Surf Coat Technol. 2017;309:497–505. doi: 10.1016/j.surfcoat.2016.11.099
  • Alvarez-Vera M, Torres-Méndez JC, Hdz-García HM, et al. Wear resistance of TiN or AlTiN nanostructured Ni-based hardfacing by PTA under pin on disc test. Wear. 2019;426-427:1584–1593. doi: 10.1016/j.wear.2018.12.096
  • Yilmaz SO, Özenbas M, Yaz M. Fecrc, FeW, and NiAl modified Iron-based alloy coating deposited by plasma transferred arc process. Mater Manuf Processes. 2011;26:722–731. doi: 10.1080/10426914.2010.480997
  • Niu BL, Qiang L, Zhang JY, et al. Plasma sprayed α-Al2O3 main phase coating using γ-Al2O3 powders. Surf Eng. 2019;35:801–808. doi: 10.1080/02670844.2018.1499175
  • Wang QY, Zhou YC, Zhou JN, et al. Microstructure and properties of PTA sprayed 310/WC composite coating. Mater Res Exp. 2019. doi: 10.1088/2053-1591/ab0ea7
  • Zhou YC, Wang QY, Zhou JN, et al. Comparison of three surface treatment methods for preparing WC-containing coatings. Surf Eng. 2019. doi: 10.1080/02670844.2019.1630924
  • Babu PS, Rao PC, Jyothirmayi A, et al. Evaluation of microstructure, property and performance of detonation sprayed WC-(W,Cr)2C-Ni coatings. Surf Coat Technol. 2018;335:345–354. doi: 10.1016/j.surfcoat.2017.12.055
  • Shu D, Li ZG, Yao CW, et al. In situ synthesised WC reinforced nickel coating by laser cladding. Surf Eng. 2018;34:276–282. doi: 10.1080/02670844.2017.1320057
  • Singh S, Kaur M. Mechanical and microstructural properties of NiCrFeSiBC/Cr3C2 composite coatings – part I. Surf Eng. 2016;32:464–474. doi: 10.1179/1743294414Y.0000000416
  • Ping XL, Fu HG, Sun ST, et al. Microstructure and performance of Nb-bearing Ni60A-Cr3C2 coatings manufactured by laser cladding. Surf Eng. 2019. doi: 10.1080/02670844.2019.1631510
  • Zhai WY, Gao YM, Sun L, et al. Effect of molybdenum addition on the microstructure and mechanical properties of Cr3C2-20wt.% Ni cermet. Mater High Temp. 2017;34:272–278. doi: 10.1080/09603409.2017.1312089
  • Vashishtha N, Sapate SG, Bagde P, et al. Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr3C2-25NiCr coatings. Tribol Int. 2018;118:381–399. doi: 10.1016/j.triboint.2017.10.017
  • Wang Q, Luo SS, Wang SY, et al. Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement. Int J Refract Met Hard Mater. 2019;81:242–252. doi: 10.1016/j.ijrmhm.2019.03.010
  • Liu Q, Bai Y, Wang HD, et al. Microstructural evolution of carbides and its effect on tribological properties of SAPS or HVOF sprayed NiCr–Cr3C2 coatings. J Alloys Compd. 2019;803:730–741. doi: 10.1016/j.jallcom.2019.06.291
  • Bobzin K, Zhao L, Öte M, et al. Impact wear of an HVOF-sprayed Cr3C2-NiCr coating. Int J Refract Met Hard Mater. 2018;70:191–196. doi: 10.1016/j.ijrmhm.2017.10.011
  • Tan J, Song H, Zheng XH, et al. High performance Co–Cr3C2 composite coating by jet electrodeposition. Surf Eng. 2018;34:861–869. doi: 10.1080/02670844.2017.1416944
  • Wang KB, Liu YX, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. J Alloy Compd. 2019. doi: 10.1016/j.jallcom.2019.152936
  • Fu LH, Han W, Gong K, et al. Microstructure and tribological properties of Cr3C2/Ni3Al composite materials prepared by hot isostatic pressing (HIP). Mater Des. 2017;115:203–212. doi: 10.1016/j.matdes.2016.11.060
  • Vlasyuk RZ, Radomysel'skii ID, Smirnov VP, et al. Dissolution of Cr3C2 in a nickel matrix during sintering I. Reaction of chromium carbide with nickel during solid-phase sintering. Sov Powder Metall Met Ceram. 1985;24:269–273. doi: 10.1007/BF00805218
  • Anthonysamy S, Ananthasivan K, Kaliappan I, et al. Gibbs energies of formation of chromium carbides. Metall Mater Trans A. 1996;27:1919–1924. doi: 10.1007/BF02651941
  • Yuan YL, Li ZG. Effects of rod carbide size, content, loading and sliding distance on friction and wear behaviors of (Cr, Fe)7C3–reinforced α-Fe based composite coating produced via PTA welding process. Surf Coat Technol. 2014;248:9–22. doi: 10.1016/j.surfcoat.2014.03.029
  • Du JY, Li FY, Li YL, et al. Influences of plasma arc remelting on microstructure and service performance of Cr3C2-NiCr/NiCrAl composite coating. Surf Coat Technol. 2019;369:16–30. doi: 10.1016/j.surfcoat.2019.04.037
  • Matikainen V, Bolelli G, Koivuluoto H, et al. Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings. Wear. 2017;388-389:57–71. doi: 10.1016/j.wear.2017.04.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.