276
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Kinetics study of CO molecules adsorption on Al2O3/Zeolite composite films prepared by roll-coating method

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 390-399 | Received 11 Feb 2020, Accepted 06 May 2020, Published online: 26 May 2020

References

  • Zhou Q, Chen W, Xu L, et al. . highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceram. Int. 2018;44:4392–4399.
  • Thomas VJ, Ramaswamy S. Application of Graphene and Graphene compounds for Environmental Remediation. Sci Adv Mater. 2016;8:477–500.
  • Liu S, Fu LH, Liu YJ, et al. Cu/C or Cu2O/C Composites: Selective synthesis, Characterization, and Applications in water Treatment. Sci Adv Mater. 2016;8:2045–2053.
  • Zhou Q, Xu L, Umar A, et al. Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sens Actuat B Chem. 2018;256:656–664.
  • Chen CY, Liu YR, Lin SS, et al. Role of annealing temperature on the formation of aligned zinc oxide nanorod arrays for efficient photocatalysts and photodetectors. Sci Adv Mater. 2016;8:2197–2203.
  • Barea E, Montoro C, Navarro JAR. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev. 2014;43:5419–5430.
  • Vambol S, Vambol V, Sundararajan M, et al. The nature and detection of unauthorized waste dump sites using remote sensing. Ecol Quest. 2019;30:43–55.
  • Magnone E, Park SK, Park JH. Effects of moisture contents in the common oak on carbonaceous aerosols generated from combustion processes in an indoor wood stove. Combust Sci Technol. 2016;188(6):982–996.
  • Vambol S, Vambol V, Sobyna V, et al. Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika. 2018;64(4):186–195.
  • Lu P, Huang Q, Bourtsalas AT, et al. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13–28.
  • Palacín J, Martínez D, Clotet E, et al. Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection. Sensors. 2019;19(9):1957.
  • Suhikova Y, Vambol S, Vambol V, et al. Justification of the most rational method for the nanostructures synthesis on the semiconductors surface. J Achiev Mater Manuf Eng. 2019;92(1–2):19–28.
  • Vambol S, Bogdanov I, Vambol V, et al. Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenid. East – Eur J Enterp Technol. 2017;6(5–90):22–31.
  • Yeom C, Kim Y. Mesoporous alumina with high capacity for carbon monoxide adsorption. Korean J Chem Eng. 2018;35:587–593.
  • Sandilands EA, Bateman DN. Carbon monoxide. Medicine (Baltimore). 2016;44:151–152.
  • Chen Y, Qin H, Hu J. CO sensing properties and mechanism of Pd doped SnO2 thick-films. Appl Surf Sci. 2018;428:207–217.
  • Wang X, Qin H, Chen Y, et al. Sensing mechanism of SnO2 (110) surface to CO: density Functional Theory Calculations. J Phys Chem C. 2014;118:28548–28561.
  • Kangal KO, Arziman İ, Uzun G, et al. Carbon monoxide poisoning in the workplace: A hidden danger. Apollo Med. 2016;13:196–197.
  • Barea E, Montoro C, Navarro JAR. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev. 2014;43:5419–5430.
  • Sato H, Kosaka W, Matsuda R, et al. Self-accelerating CO sorption in a soft nanoporous crystal. Science. 2014;343:167–170.
  • Yeom C, Selvaraj R, Kim Y. Preparation of nanoporous alumina using aluminum chloride via precipitation templating method for CO adsorbent. J Ind Eng Chem. 2018;67:132–139.
  • Bobbitt NS, Mendonca ML, Howarth AJ, et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem Soc Rev. 2017;46:3357–3385.
  • Ning H, Lan ZQ, Guo J, et al. Carbon-monoxide adsorption and dissociation on Nb (1 1 0) surface. Appl Surf Sci. 2015;328:641–648.
  • Over H. Crystallographic study of interaction between adspecies on metal surfaces. Prog Surf Sci. 1998;58:249–376.
  • Feibelman P, Hammer B, Nørskov JK, et al. The CO/Pt (111) Puzzle. J Phys Chem B. 2001;108:4018–4025.
  • Vang RT, Wang JG, Knudsen J, et al. The adsorption structure of NO on Pd (111) at high Pressures studied by STM and DFT. J Phys Chem B. 2005;109:14262–14265.
  • Hansen KH, Sljivancanin Z, Hammer B, et al. An STM and DFT study of the ordered structures of NO on Pd (111). Surf Sci. 2002;496:1–9.
  • Popa C, Flipse CFJ, Jansen APJ, et al. NO structures adsorbed on Rh (111): theoretical approach to high-coverage STM images. Phys Rev B. 2006;73:245408.
  • Mavrikakis M, Rempel J, Greeley J, et al. Atomic and molecular adsorption on Rh (111). J Chem Phys. 2002;117:6737–6744.
  • Gajdos M, Hafner J, Eichler A. Ab initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption. J Phys Condens Matter. 2005;18:13–40.
  • Glover TG, Peterson GW, Schindler BJ, et al. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem Eng Sci. 2011;66:163–170.
  • Mozaffari N, Mirzahosseini AHS, Sari AH, et al. Investigation of carbon monoxide gas adsorption on the Al2O3/Pd(NO3)2/zeolite composite film. J Theor Appl Phys. 2020;14:65–74.
  • Yin X, Zhou W D, Li J, et al. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J Alloys Compd. 2019;805:229–236.
  • Atsushi H. Production of thin film-like Zeolite, Japanese Patent NO. JPH10167718, 1998; https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=19980623&CC=JP&NR==H10167718A&KC=A#.
  • Katsuhiro K, Takayoshi M, Tsuguo K. Method for forming Zeolite thin film, and Zeolite thin film, Japanese Patent NO. JP2008050223, 2008; https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=1&ND=3&adjacent=true&locale=en_EP&FT=D&date=20080306&CC=JP&NR=2008050223A&KC=A#.
  • Maiko S, Tomoyuki N, Kumiko O, et al. Porous adsorption film, Japanese Patent NO. JP2012035256, 2012; https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20120223&CC=JP&NR=2012035256A&KC=A#.
  • Ţălu S, Bramowicz M, Kulesza S, et al. Microstructure and micromorphology of Cu/Co nanoparticles: surface texture analysis. Electron Mater Lett. 2016;12:580–588.
  • Talu S, Bramowicz M, Kulesza S, et al. Fractal features of carbon–nickel composite thin films. Microsc Res Technol. 2016;79:1208–1213.
  • Lehman SE, Larsen SC. Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ Sci Nano. 2014;1:200–213.
  • Thote JA, Chatti RV, Iyer KS, et al. N-doped mesoporous alumina for adsorption of carbon dioxide. J Environ Sci. 2012;24:1979–1984.
  • Chen C, Ahn WS. CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem Eng J. 2011;166:646–651.
  • Tabesh S, Davar F, Estarki MRL. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloys Compd. 2018;730:441–449.
  • Dejam L, Solaymani S, Achour A, et al. Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem Phys Lett. 2019;719:78–90.
  • Talu S, Bramowics M, Kulesza S, et al. Microstructure and micromorphology of ZnO thin films: Case study on Al doping and annealing effects. Superlattice Microst. 2016;93:109–121.
  • Boochani A, Nowrozi B, Khodadadi J, et al. Novel graphene-like Co2VAl (111): case study on magnetoelectronic and optical properties by first-principles calculations. J Phys Chem C. 2017;121:3978–3986.
  • Keshavarz A, Parang Z, Nasseri A. The effect of sulfuric acid, oxalic acid, and their combination on the size and regularity of the porous alumina by anodization. J Nanostructure Chem. 2013;3:34.
  • Saadi Z, Saadi R, Fazaeli R. Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured γ-alumina. J Nanostructure Chem. 2013;3:48.
  • Amrollahi M, Ghaneian M T, Tabatabaee M, et al. Highly efficient catalyst for removal of heavy metal ions modified by a novel Schiff base ligand. J Nanostruct. 2018;8:374–382.
  • Patra A K, Dutta A, Bhaumik A. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water. J Hazard. Mater. 2012;201:170–177.
  • Adimi M, Mohammadpour M, Fathinejadjirandehi H. Treatment of petrochemical wastewater by modified electro-Fenton method with nano porous aluminum Electrode. J Water Environ Nanotechnol. 2017;2:186–194.
  • Kuklin Mikhail S, Honkala K, Häkkinen H. Computational study of adsorption of CO2, SO2, and H2CO on free-standing and molybdenum-supported CaO films. J Phys Chem C. 2019;123:7758–7765.
  • Freund HJ, Pacchioni G. Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev. 2008;37:2224–2242.
  • Nilius N. Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf Sci Rep. 2009;64:595–659.
  • Giordano L, Pacchioni G. Oxide films at the nanoscale: new structures, new functions, and new materials. Acc Chem Res. 2011;44:1244–1252.
  • Honkala K. Tailoring oxide properties: an impact on adsorption characteristics of molecules and metals. Surf Sci. Rep. 2014;69:366–388.
  • Pacchioni G, Freund H. Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chem Rev. 2013;113:4035–4072.
  • Salehi M, Arabsarhang E. Solution combustion synthesis using Schiff-base aluminum complex without fuel and optical property investigations of alumina nanoparticles. Int Nano Lett. 2015;5:141–146.
  • Samain L, Jaworski A, Edén M, et al. Structural analysis of highly porous γ-Al2O3. J Solid State Chem. 2014;217:1–8.
  • Euzen P, Raybaud P, Krokidis X, et al. Alumina. Handbook of porous Solids. New York: Wiley-VCH Verlag GmbH; 2002. p. 1591–1677. doi:10.1002/9783527618286.ch23b.
  • Parida KM, Pradhan Amaresh C, Das J, et al. Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater Chem Phys. 2009;113:244–248.
  • Bacariza MC, Bértolo R, Graça I, et al. The effect of the compensating cation on the catalytic performances of Ni/USY zeolites towards CO2 methanation. J CO2 UTIL. 2017;21:280–291.
  • Guisnet M, Ramôa Ribeiro F. Deactivation and Regeneration of Zeolite Catalysts. Catal Sci Ser, Imperial College Press. 2011: 3–18.
  • Wang L, Zhao J, Wang L, et al. Titanium-decorated graphene oxide for carbon monoxide capture and separation. Phys Chem Chem Phys. 2011;13:21126–21131.
  • Ackley MW, Rege SU, Saxena H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 2003;61:25–42.
  • Neto MB, Moeller A, Staudt R, et al. Dynamic bed measurements of CO adsorption on microporous adsorbents at high pressures for hydrogen purification processes. Sep Purif Technol. 2011;77:251–260.
  • Mozaffari N, Mozaffari N, Elahi SM, et al. The method of preparation of carbon monoxide adsorbent. Ukrainian Patent NO. u2019096Kyiv: State Patent Office of Ukraine 2019.
  • Mozaffari N, Mozaffari N, Elahi SH, et al. The method of preparation of carbon monoxide adsorbent. Ukrainian Patent NO. u2019096Kyiv: State Patent Office of Ukraine 2019.
  • Scherrer P. Bestimmung der größe und der inneren Struktur von Kolloidteilchen mittels röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu göttingen, Mathematisch-Physikalische Klasse 1918; 1918: 98. http://eudml.org/doc/59018.
  • Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst. 1978;11:102–113.
  • Yin XT, Zhou W D, Lv P, et al. Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J Mater Sci Mater Electron. 2019;30:14687.
  • Islam A, Taufiq-Yap YH, Ravindra P, et al. Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy. 2015;89:965–973.
  • Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, et al. Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J Mol Liq. 2015;211:431–441.
  • Jellinek M, Fankuchen I. X-ray diffraction Examination of gamma alumina. Ind Eng Chem. 1945;37:158–163.
  • Mingulina EI, Maslennikova GN, Korovin NV, et al. General Chemistry Course Book. 2nd ed. Moscow, Russia: Vysshaya Shkola; 1990. p. 446. revised, page.
  • Haque E, Jun JW, Talapaneni SN, et al. Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. J Mater Chem. 2010;20:10801–10803.
  • Martens S, Ortmann R, Brieler FJ, et al. Periodic mesoporous Organosilicas as adsorbents of toxic trace gases out of the ambient air. Zeitschrift für Anorganische und Allgemeine Chemie. 2014;640(3-4):632–640.
  • Samandari S S, Gulcan H O, Samandari S S, et al. Efficient removal of anionic and cationic dyes from an aqueous solution using Pullulan-graft-polyacrylamide porous hydrogel. Water Air Soil Pollut. 2014; 225: 2177.
  • Mungondori HH, Mtetwa S, Tichagwa L, et al. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption. Water Sci Technol. 2017;75(10):2443–2453.
  • Mozaffari N, Solaymani S, Achour A, et al. New insights into SnO2/Al2O3, Ni/Al2O3, and SnO2/Ni/Al2O3 composite films for CO adsorption: building a bridge between microstructures and adsorption properties. J Phys Chem C. 2020;124:3692–3701.
  • Tanhaei B, Ayati A, Lahtinen M, et al. Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl Orange adsorption. Chem Eng J. 2015;259:1–10.
  • Lagergen S, Sven K. Zurtheorie der sogenannten adsorption gelösterstoffe. vetensk Akad Handl. 1898;24(4):1–39.
  • Sizirici B, Yildiz I. Adsorption capacity of iron oxide-coated gravel for landfill leachate: simultaneous study. Int J Environ Sci Technol. 2017;14:1027–1036.
  • Subhan F, Aslam S, Yan Z, et al. Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization. Chem Eng J. 2018;354:706–715.
  • Negm NA, Abd El Wahed MG, Hassan A, et al. Feasibility of metal adsorption using brown algae and fungi: effect of biosorbents structure on adsorption isotherm and kinetics. J Mol Liq. 2018;264:292–305.
  • Idris SA, Alotaibi KM, Peshkur TA, et al. Adsorption kinetic study: effect of adsorbent pore size distribution on the rate of Cr (VI) uptake. Micropor Mesopor Mat. 2013;165:99–105.
  • Aly Z, Graulet A, Scales N, et al. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies. Environ Sci Pollut Res. 2014;23:3972–3986.
  • Repo E, Warchoł JK, Bhatnagar A, et al. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res. 2013;47:4812–4832.
  • Chaudry SA, Khan TA, Ali I. Adsorptive removal of Pb(II) and Zn(II) from water onto manganese oxide-coated sand: isotherm, thermodynamic and kinetic studies. Egypt J Basic Appl Sci. 2016;3:287–300.
  • Changmai M, Priyesh JP, Purkait MK. Al2O3 nanoparticles synthesized using various oxidizing agents: defluoridation performance. J Sci Adv Mater Dev. 2017;2:483–492.
  • Shekarriz M, Ramezani Z, Elhami F. Preparation and characterization of ZSM5-supported nano-zero-valent iron and its potential application in nitrate remediation from aqueous solution. Int J Environ Sci Technol. 2017;14:1081–1090.
  • Hameed BH. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J Hazard Mater. 2009;162:344–350.
  • Cheung WH, Szeto YS, McKay G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol. 2007;98:2897–2904.
  • Ofomaja AE. Kinetics and mechanism of methylene blue sorption onto palm kernel fibre. Process Biochem. 2007;42:16–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.