418
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Influence of high-temperature condition on the microstructure and properties of FeCoCrNiAl0.3 and FeCoCrNiAl0.7 high-entropy alloy coatings

, , , , , , & show all
Pages 179-187 | Received 03 Oct 2019, Accepted 17 Jan 2020, Published online: 01 Aug 2020

References

  • Niendorf T, Wegener T, Li ZM, et al. Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Mater. 2018;143:63–67. doi: 10.1016/j.scriptamat.2017.09.013
  • Fu ZQ, MacDonald BE, Zhang DL, et al. FCC nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity. Scripta Mater. 2018;143:108–112. doi: 10.1016/j.scriptamat.2017.09.023
  • Li YG, Li R, Peng Q. Enhanced surface bombardment resistance of the CoNiCrFeMn high entropy alloy under extreme irradiation flux. Nanotechnology. 2020;31:025703. doi: 10.1088/1361-6528/ab473f
  • Mishra S, Maiti S, Dwadasi BS, et al. Realistic microstructure evolution of complex Ta-Nb-Hf-Zr high-entropy alloys by simulation techniques. Sci Rep – UK. 2019;9:16337. doi: 10.1038/s41598-019-52170-0
  • Guo L, Gu J, Gong X, et al. Short-range ordering induced serrated flow in a carbon contained FeCoCrNiMn high entropy alloy. Micron. 2019;126: UNSP 102739. doi: 10.1016/j.micron.2019.102739
  • Huo WY, Zhou H, Fang F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Design. 2017;134:226–233. doi: 10.1016/j.matdes.2017.08.030
  • Wang SL, Zhang ZY, Gong YB, et al. Microstructures and corrosion resistance of Fe-based amorphous/nanocrystalline coating fabricated by laser cladding. J Alloy Compd. 2017;728:1116–1123. doi: 10.1016/j.jallcom.2017.08.251
  • Wang CL, Gao Y, Zeng ZC, et al. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al. J Alloy Compd. 2017;727:278–285. doi: 10.1016/j.jallcom.2017.08.101
  • Li YH, Gao SY. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process. Appl Phys A – Mater. 2017;123(10).
  • Penaranda X, Moralejo S, Lamikiz A, et al. An adaptive laser cladding methodology for blade tip repair. Int J Adv Manuf Tech. 2017;92:4337–4343. doi: 10.1007/s00170-017-0500-1
  • Sharma A, Deshmukh SA, Liaw PK, et al. Crystallization kinetics in AlxCrCoFeNi (0 ≤ x ≤ 40) high-entropy alloys. Scripta Mater. 2017;141:54–57. doi: 10.1016/j.scriptamat.2017.07.024
  • Ogura M, Fukushima T, Zeller R, et al. Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc. J Alloy Compd. 2017;715:454–459. doi: 10.1016/j.jallcom.2017.04.318
  • Lv YK, Hu RY, Yao ZH, et al. Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater Design. 2017;132:392–399. doi: 10.1016/j.matdes.2017.07.008
  • Feng XB, Fu W, Zhang JY, et al. Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films. Scripta Mater. 2017;139:71–76. doi: 10.1016/j.scriptamat.2017.06.009
  • Gorr B, Muller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition. Oxid Met. 2017;88:339–349 SI. doi: 10.1007/s11085-016-9696-y
  • Gao MC, Yeh JW, Liaw PK, et al. High-entropy alloys fundamentals and applications. Cham (Switzerland): Springer International Publishing; 2016.
  • Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements, G5-94, Annual Book of ASTM Standards, vol. 01.11:1994; 63–73.
  • Standard test method for conducting potentiodynamic polarization resistance measurements, G59-97, ASTM International, West Conshohocken, PA, 2009.
  • Cai YC, Zhu LS, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAlx high-entropy alloy coatings. Mater Res Express. DOI:10.1088/2053-1591/ab562d.
  • Zhang ZY, Huang SL, Chen LL, et al. Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci. 2017;416:891–900. doi: 10.1016/j.apsusc.2017.04.223
  • Ardell AJ, Pozuelo M. Disorder strengthening of ordered L1(2) alloys by face centered cubic (A1) precipitates. Intermetallics. 2017;88:81–90. doi: 10.1016/j.intermet.2017.05.010
  • Hale LM, Becker CA. Vacancy dissociation in body-centered cubic screw dislocation cores. Comp. Mater Sci. 2017;135:1–8.
  • Sun Y, Wang JL, Chen MZ, et al. Screw dislocation-driven t-Ba2V2O7 helical meso/nanosquares: microwave irradiation assisted-SDBS fabrication and their unique magnetic properties. J Mater Chem C. 2017;5:6336–6342. doi: 10.1039/C7TC00330G
  • Trukhanov EM, Fritzler KB, Vasilenko AP, et al. Dislocation structure of Ge crystals grown by low thermal gradient Czochralski technique. J Cryst Growth. 2017;468:457–461. doi: 10.1016/j.jcrysgro.2016.11.051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.