264
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic reinforcement of Cu–Ni–Al films with dual nanostructure

, , , , , & show all
Pages 795-807 | Received 05 Jul 2020, Accepted 21 Aug 2020, Published online: 08 Sep 2020

References

  • Hu CK, Harper JME. Copper interconnections and reliability. Mater Chem Phys. 1998;52:5–16. doi: 10.1016/S0254-0584(98)80000-X
  • Mitsushio M, Miyashita K, Higo M. Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sens Actuators A. 2006;125:296–303. doi: 10.1016/j.sna.2005.08.019
  • Min L, Kun XW, Wei W, et al. Thermal shock behaviours of atmospheric plasma sprayed NiCrAlY/Al2O3-20%TiO2 gradient coating on Cu–Be alloy. Surf Eng. 2020: 1–8. doi:10.1080/02670844.2020.1766866 doi: 10.1080/02670844.2020.1722484
  • Yilbas BS. Laser ablation of phosphor bronze for superhydrophobic surface. Surf Eng. 2016;32(12):885–892. doi: 10.1179/1743294414Y.0000000325
  • Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scr Mater. 2006;54:1913–1918. doi: 10.1016/j.scriptamat.2006.02.022
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Lu L, Tao NR, Wang LB, et al. Grain growth and strain release in nanocrystalline copper. J Appl Phys. 2001;89:6408–6414. doi: 10.1063/1.1367401
  • Kobiyama M, Inami T, Okuda S. Mechanical behavior and thermal stability of nanocrystalline copper film prepared by gas deposition method. Scr Mater. 2001;44:1547–1551. doi: 10.1016/S1359-6462(01)00834-X
  • Zhang Y, Yang L, Dai J, et al. Microstructure and mechanical properties of pulsed laser cladded IN718 alloy coating. Surf Eng. 2018;34(4):1–7. doi: 10.1080/02670844.2016.1200847
  • Yin B, Xie G, Jiang XW, et al. Microstructural instability of an experimental nickel-based single-crystal superalloy. Acta Metall Sin. 2020: 1–9. doi:10.1007/s40195-020-01057-5.
  • Fleischmann E, Konrad C, PreuNer J, et al. Influence of solid solution Hardening on Creep properties of single-crystal nickel-based superalloys. Metall Mater Trans A. 2015;46:1125–1130. doi: 10.1007/s11661-014-2727-x
  • Cho YR, Kim YH, Lee TD. Precipitation hardening and recrystallization in Cu-4% to 7% Ni-3% Al alloys. J Mater Sci. 1991;26:2879–2886. doi: 10.1007/BF01124816
  • Sierpiński Z, Gryziecki J. Phase transformations and strengthening during ageing of CuNi10Al3 alloy. Mater Sci Eng A. 1999;264:279–285. doi: 10.1016/S0921-5093(98)01083-1
  • Shen LN, Li Z, Dong QY, et al. Microstructure and texture evolution of novel Cu-10Ni-3Al-0.8Si alloy during hot deformation. J Mater Res. 2016;31:1113–1123. doi: 10.1557/jmr.2016.104
  • Shen LN, Li Z, Dong QY, et al. Microstructure evolution and quench sensitivity of Cu-10Ni-3Al-0.8Si alloy during isothermal treatment. J Mater Res. 2015;30:736–744. doi: 10.1557/jmr.2015.12
  • Tsuda H, Ito T, Nakayama Y. Thermo-mechanical treatment of Cu-7.5at.%Ni-2.5at.%Al alloy. J Soc Mater Sci Jpn. 1986;35:761–766. doi: 10.2472/jsms.35.761
  • Rudolph G. Microprobe measurements to determine phase boundaries and diffusion paths in ternary phase diagrams taking a Cu-Ni-Al system as an example, Vienna, 1983.
  • Zheng YH, Li XN, Cheng XT, et al. Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe). J Phys D: Appl Phys. 2018;51:135304. doi: 10.1088/1361-6463/aab003
  • Manika I, Maniks J. Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing. J Phys D: Appl Phys. 2008;41:074010. doi: 10.1088/0022-3727/41/7/074010
  • I.H.C. Properties and selection: nonferrous alloys and special-purpose materials. the United States: ASM International; 1990.
  • Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mater Sci Eng A. 2011;529:62–73. doi: 10.1016/j.msea.2011.08.061
  • Gaganov A, Freudenberger J, Botcharova E, et al. Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu-7 wt.%Ag alloys. Mater Sci Eng A. 2006;437:313–322. doi: 10.1016/j.msea.2006.07.121
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Amsterdam: Elsevier Press; 2012.
  • Kumar A, Gokhale A, Ghosh S, et al. Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics. Mater Sci Eng. A. 2019;750:132–140. doi: 10.1016/j.msea.2019.02.020
  • Richardson RCD. The wear of metals by relatively soft abrasives. Wear. 1968;11(4):245–275. doi: 10.1016/0043-1648(68)90175-0
  • Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int Mater Rev. 2019;64(6):1–26. doi: 10.1080/09506608.2018.1516713
  • Rakoczy Ł, Grudzień M, Cygan R. Influence of melt-pouring temperature and composition of primary coating of shell mold on tensile strength and creep resistance of Ni-based Superalloy. J Mater Eng Perform. 2019;28(7):3826–3834. doi: 10.1007/s11665-018-3853-1
  • Solís C, Munke J, Bergner M, et al. In situ characterization at elevated temperatures of a new Ni-based superalloy VDM-780 premium. Metall Mater Trans A. 2018;49:4373–4381. doi: 10.1007/s11661-018-4761-6
  • Smith TM, Bonacuse P, Sosa J, et al. A quantifiable and automated volume fraction characterization technique for secondary and tertiary γ′ precipitates in Ni-based superalloys. Mater Charact. 2018;140:86–94. doi: 10.1016/j.matchar.2018.03.051
  • Dey S, Gayathri N, Bhattacharya M, et al. In situ XRD studies of the process dynamics during annealing in cold-rolled copper. Metall Mater Trans A. 2016;47:6281–6291. doi: 10.1007/s11661-016-3768-0
  • Chung FH. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. matrix-flushing method for quantitative multicomponent analysis. . J Appl Crystallogr. 1974;7:519–525. doi: 10.1107/S0021889874010375
  • Chung FH. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr. 1974;7:526–531. doi: 10.1107/S0021889874010387
  • Chung FH. Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. J Appl Crystallogr. 1975;8:17–19. doi: 10.1107/S0021889875009454
  • Kayser FX, Stassis C. The elastic constants of Ni3Al at 0 and 23.5 °C. Phys Stat Sol. 1981;64:335–342. doi: 10.1002/pssa.2210640136
  • Chen H, Jia CC, Li SJ. Interfacial characterization and thermal conductivity of diamond / Cu composites prepared by two HPHT techniques. J Mater Sci. 2012;47:3367–3375. doi: 10.1007/s10853-011-6180-6
  • Keller R, Baker SP, Arzt E, et al. Quantitative analysis of strengthening mechanisms in thin Cu films: effects of film thickness, grain size, and passivation. J Mater Reh. 1998;13:1307–1317. doi: 10.1557/JMR.1998.0186
  • Lei Q, Xiao Z, Hu WQ, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater Sci Eng. A. 2017;697:37–47. doi: 10.1016/j.msea.2017.05.001
  • Masumura RA, Hazzledine PM, Pande CS. Yield stress of fine grained materials. Acta Mater. 1998;46:4527–4534. doi: 10.1016/S1359-6454(98)00150-5
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;10:187–196. doi: 10.1016/j.actamat.2015.08.076
  • Langley Alloys Ltd. HIDURON 130: a very high strength Cupronickel, 2008.
  • Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11:203–209. doi: 10.1016/0001-6160(63)90213-X
  • Doljack FA, Hoffman RW. The origins of stress in thin nickel films. Thin Solid Films. 1972;12:71–74. doi: 10.1016/0040-6090(72)90396-3
  • Hoffman RW. Mechanical properties of non-metallic thin films. Germany: Springer-Verlag Press; 1976.
  • Köster W, Franz H. Poisson’s ratio for metals and alloys. Metall Rev. 1961;6:1–56.
  • Ahrens LH. The use of ionization potentials Part 1. Ionic radii of the elements. Geochim Cosmochim Acta. 1952;2:155–169. doi: 10.1016/0016-7037(52)90004-5
  • Ardell A. Precipitation hardening. Metall Trans A. 1985;16:2131–2165. doi: 10.1007/BF02670416
  • Gerold V, Haberkorn H. On the critical resolved shear stress of solid solutions containing coherent precipitates. Phys Stat Sol. 1966;16:675–684. doi: 10.1002/pssb.19660160234
  • Ma Y, Wang Q, Jiang BB, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions. Acta Mater. 2018;147:213–225. doi: 10.1016/j.actamat.2018.01.050
  • Argon A. Strengthening mechanisms in crystal plasticity. Oxford: Oxford University Press; 2007.
  • Nembach E. Precipitation hardening caused by a difference in shear modulus between particle and matrix. Phys Stat Sol. 1983;78:571–581. doi: 10.1002/pssa.2210780223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.