308
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Growth stress and interdiffusion analysis of NiCoCrAlYTa coating during oxidation

, , , , , , & show all
Pages 808-817 | Received 27 Apr 2020, Accepted 24 Aug 2020, Published online: 11 Sep 2020

References

  • Sun J, Fu QG, Liu GN, et al. Thermal shock resistance of thermal barrier coatings for nickel-based superalloy by supersonic plasma spraying. Ceram Int. 2015;41(8):9972–9979.
  • Goti R, Bétaille-Francoual M, Hourcastagné E, et al. Isothermal oxidation behavior of NiCoCrAlYTa coatings produced by HVOF spraying and Tribomet™ process. Oxid Met. 2014;81(1–2):105–113.
  • Rossmann L, Northam M, Sarley B, et al. Investigation of TGO stress in thermally cycled plasma-spray physical vapor deposition and electron-beam physical vapor deposition thermal barrier coatings via photoluminescence spectroscopy. Surf Coat Tech. 2019;378(23):125047–125060.
  • Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315–348.
  • Abubakar AA, Arif AFM, Al-Athel KS, et al. Modeling residual stress development in thermal spray coatings: current status and way forward. J Therm Spray Technol. 2017;26(6):1115–1146.
  • Fardan A, Ahmed R. Modeling the evolution of residual stresses in thermally sprayed YSZ coating on stainless steel substrate. J Therm Spray Technol. 2019;28(4):717–736.
  • Yu QM, Zhou HL, Wang LB. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system. Ceram Int. 2016;42(7):8338–8350.
  • Mohammadi M, Poursaeidi E, Torkashvand K. Finite element analysis of the effect of thermal cycles and ageing on the interface delamination of plasma sprayed thermal barrier coatings. Surf Coat Tech. 2019;375(10):43–255.
  • Maurel V, Busso EP, Frachon J, et al. A methodology to model the complex morphology of rough interfaces. Int J Solids Struct. 2014;51(19):3293–3302.
  • Kane KA, Lance MJ, Sweet M, et al. The effect of bond coating surface modification on the performance of atmospheric plasma spray thermal barrier coatings. Surf Coat Tech. 2019;378(25):142–150.
  • Ren P, Yang Y, Li W, et al. Cyclic oxidation behavior of a multilayer composite coating for single-crystal superalloys. Corros Sci. 2018;145(9):26–34.
  • Naeimi F, Rahimipour MR, Salehi M. Effect of sandblasting process on the oxidation behavior of HVOF MCrAlY coatings. Oxid Met. 2016;86(1-2):59–73.
  • Yuan K, Peng RL, Li XH, et al. Some aspects of elemental behavior in HVOF MCrAlY coatings in high-temperature oxidation. Surf Coat Tech. 2015;261(15):86–101.
  • Chęcmanowski JG, Szczygieł I, Mazur A, et al. Protective properties of SiO2 with SiO2 and Al2O3 nanoparticles sol-gel coatings deposited on FeCrAl alloys. Ceram Int. 2019;45(2):2811–2819.
  • Ostenfeld S, Strachan G. Influence of the mode of introduction of a reactive element on the high temperature oxidation behavior of an alumina-forming alloy. Part I: Isothermal oxidation tests. Mater Corros. 2015;55(5):352–357.
  • Du W, Shi Q, Dai MJ, et al. High temperature oxidation resistance of NiCrAIYSi coating deposited by arc ion plating. China Surf Eng. 2018;31(1):81–87.
  • Yang HZ, Zou JP, Shi Q, et al. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation. Corros Sci. 2019;153(7):162–169.
  • Wang RL, Gong XY, Peng H, et al. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations. Appl Surf Sci. 2015;326(11):124–130.
  • Yuan K, Eriksson R, Peng RL, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation. Surf Coat Tech. 2013;232(15):204–215.
  • Han YJ, Zhu ZY, Zhang BS, et al. Effects of process parameters of vacuum pre-oxidation on the microstructural evolution of CoCrAlY coating deposited by HVOF. J Alloy Compd. 2018;735(11):547–559.
  • Song X, Meng F, Kong M, et al. Advanced analysis on growth mechanisms of thermally grown oxide at elevated temperature for thermal barrier coatings. Vacuum. 2016;134(9):33–39.
  • Sahith MS, Giridhara G, Kumar RS. Development and analysis of thermal barrier coatings on gas turbine blades – a review. Mater Today. 2018;5(1):2746–2751.
  • Hou SJ. Fabrication and oxidation behavior of a magnetron sputtering microcrystalline β-NiAl coating at 1100°C in air [D]. Harbin: Harbin Engineering University; 2015.
  • Ghadami F, Zakeri A, Aghdam ASR, et al. Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite. Surf Coat Tech. 2019;373(15):7–16.
  • SwadzBa R, SwadzBa L, Wiedermann J, et al. Characterization of alumina scales grown on a 2nd generation single crystal Ni superalloy during isothermal oxidation at 1050, 1100 and 1150°C. Oxid Met. 2014;82(3–4):195–208.
  • Hejrani E, Sebold D, Nowak WJ, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying. Surf Coat Tech. 2017;313(3):191–201.
  • Luo L, Xiao S, Zou Z, et al. A High Performance NiCoCrAlY bond coat manufactured using laser powder deposition. Corros Sci. 2017;126(9):356–365.
  • Lu J, Chen Y, Zhao C, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium. Corros Sci. 2019;153(7):178–190.
  • Mohammadreza D, Mat YMA, Kay CM, et al. Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100°C. Corros Sci. 2018;144(24):13–34.
  • Lu J, Chen Y, Zhang H, et al. Superior oxidation and spallation resistant NiCoCrAlY bond coat via homogenizing the yttrium distribution. Corros Sci. 2019;159(24):178–190.
  • Li X, Huang X, Yang Q, et al. Isothermal and cyclic oxidation performance of vertically cracked and columnar thermal barrier coating structures produced using axial suspension plasma spraying process. J Eng Gas Turb Power. 2016;138(1):1229–1236.
  • Sangalli D, Debernardi A. Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of Yttrium-doped ZrO2: a first-principles approach. Phys Rev B. 2011;84(21):2461–2468.
  • Chen WR, Irissou E, Wu X, et al. The oxidation behavior of TBC with cold spray CoNiCrAlY bond coat. J Therm Spray Technol. 2011;20(1–2):132–138.
  • Meng GH, Zhang BY, Liu H, et al. Highly oxidation resistant and cost effective MCrAlY bond coats prepared by controlled atmosphere heat treatment. Surf Coat Tech. 2018;347:54–65.
  • Nath S, Manna I, Majumdar JD. Kinetics and mechanism of isothermal oxidation of compositionally graded yttria stabilized zirconia (YSZ) based thermal barrier coating. Corros Sci. 2014;88(6):10–22.
  • Jackson RD, Taylor MP, Evans HE, et al. Oxidation study of an EB-PVD MCrAlY thermal barrier coating system. Oxid Met. 2011;76(3–4):259–271.
  • Zhou CC. The correlation of residual stress in TGO with interface failure of thermal barrier coatings [D]. Xiangtan: Xiangtan University; 2014.
  • Han ZY, Zhang H. Relation between Residual stresses in TBCs interface area with TGO interface morphology. Appl Mecha Mater. 2012;151(124):469–473.
  • Yan K, Guo H, Gong S. High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres. Corros Sci. 2013;75(1):337–344.
  • Han Y, Chen H, Gao D, et al. Microstructural evolution of NiCoCrAlHfYSi and NiCoCrAlTaY coatings deposited by AC-HVAF and APS. J Therm Spray Technol. 2017;26(8):1758–1775.
  • Xu BQ, Luo LR, Lu J, et al. Effect of residual stress on the spallation of the thermally-grown oxide formed on NiCoCrAlY coating. Surf Coat Tech. 2020;381(1):112–120.
  • Clarke DR. The lateral growth strain accompanying the formation of a thermally grown oxide. Acta Mater. 2003;51(5):1393–1407.
  • Sun Y, Zhang W, Li J, et al. Local stress around cap-like portions of anisotropically and nonuniformly grown oxide layer in thermal barrier coating system. J Mater Sci. 2013;48(17):5962–5982.
  • Wang FH, Wang YJ, Wu YY. High temperature oxidation growth stress prediction of thermal barrier coating. Rare Metal Mat Eng. 2010;39(12):2120–2125.
  • Lu J, Zhang H, Chen Y, et al. Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation. Corros Sci. 2019;159(6):108126–108140.
  • Busso EP, Wright L, Evans HE, et al. A physics-based life prediction methodology for thermal barrier coating systems. Acta Mater. 2007;55(5):1491–1503.
  • Chen H, Rushworth A, Hou X, et al. Effects of temperature on the β-phase depletion in MCrAlYs: a modelling and experimental study towards designing new bond coat alloys. Surf Coat Tech. 2019;363(15):400–410.
  • Zhong J, Liu J, Zhou X, et al. Thermal cyclic oxidation and interdiffusion of NiCoCrAlYHf coating on a Ni-based single crystal superalloy. J Alloy Compd. 2016;657(10):616–625.
  • Bokstein BS, Rodin AO. Grain boundary diffusion and grain boundary segregation in metals and alloys. Diffusion Foundations. 2014;1(4):99–122.
  • Gupta M, Eriksson R, Sand U, et al. A diffusion-based oxide layer growth model using real interface roughness in thermal barrier coatings for lifetime assessment. Surf Coat Tech. 2015;271(12):181–191.
  • Liu YZ, Hu XB, Zheng SJ, et al. Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation. Mater Design. 2015;80(5):63–69.
  • Wang JL, Chen MH, Yang LL, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy. Corros Sci. 2015;98(9):530–540.
  • Chen Y, Zhao X, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings. Acta Mater. 2018;159(20):150–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.