324
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of aging on microstructure and wear resistance of Ti-55511/BN composite coating

ORCID Icon, , , &
Pages 712-721 | Received 04 Jun 2020, Accepted 16 Oct 2020, Published online: 05 Nov 2020

References

  • Zhou F, Zhang H, Sun C, et al. Microstructure and wear properties of multi ceramics reinforced metal-matrix composite coatings on Ti–6Al–4 V alloy fabricated by laser surface alloying. Surf Eng. 2019;35(8):683–691. DOI:10.1080/02670844.2019.1570611.
  • Li X, Hu G, Tian J, et al. Wear resistance enhancement of Ti-6Al-4 V alloy by applying Zr-modified silicide coatings. J Mater Eng Perform. 2018;27(3):1073–1082. DOI:10.1007/s11665-018-3203-3.
  • Li X, Yue W, Huang F, et al. Tribological behaviour of textured titanium under abrasive wear. Surf Eng. 2019;35(4):378–386. DOI:10.1080/02670844.2018.1512233.
  • Boyer RR, Briggs RD. The use of β titanium alloys in the aerospace industry. J Mater Eng Perform. 2005;14(6):681–685. DOI:10.1361/105994905X75448.
  • Yokozeki T, Kotsuka N, Yoshida K, et al. Damage characterization and numerical modeling of titanium matrix composites subjected to low-velocity impact for landing gear application. Adv Compos Mater. 2015;24(4):343–358. DOI:10.1080/09243046.2014.912412.
  • Liang SX, Yin LX, Zheng LY, et al. Tribological behavior and wear mechanism of TZ20 titanium alloy after various treatments. J Mater Eng Perform. 2018;27(9):4645–4654. DOI:10.1007/s11665-018-3570-9.
  • Ping X-L, Fu H-G, Sun S-T, et al. Microstructure and performance of Nb-bearing Ni60A-Cr3C2 coatings manufactured by laser cladding. Surf Eng. 2019:1–13. DOI:10.1080/02670844.2019.1631510.
  • Liu J, Zhang J, Deng L, et al. Microstructure and corrosion behaviour of laser-cladded γ-Ni/Mo2Ni3Si alloy coating. Surf Eng. 2019;35(1):59–65. DOI:10.1080/02670844.2018.1460091.
  • Aich S, Ravi Chandran KS. Tib whisker coating on titanium surfaces by solid-state diffusion: Synthesis, microstructure, and mechanical properties. Metall Mater Trans A. 2002;33(11):3489–3498. DOI:10.1007/s11661-002-0336-6.
  • Tian YS, Zhang QY, Qin CP, et al. Effect of laser scanning speed on nitrided layers fabricated on titanium alloy. Surf Eng. 2011;27(6):424–427. DOI:10.1179/026708410X12459349719936.
  • Uddin GM, Jawad M, Ghufran M, et al. Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing. Int J Adv Manuf Tech. 2019;102(5):1391–1404. DOI:10.1007/s00170-018-03244-2.
  • Gotman I, Travitzky NA, Gutmanas EY. Dense in situ TiB2/TiN and TiB2/TiC ceramic matrix composites: reactive synthesis and properties. Mater Sci Eng A. 1998;244(1):127–137. DOI:10.1016/S0921-5093(97)00835-6.
  • Rodeghiero ED, Tse OK, Giannelis EP. Interconnected metal-ceramic composites by chemical means. JOM. 1995;47(3):26–28. DOI:10.1007/BF03221430.
  • Li M, Huang J, Zhu YY, et al. Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding. Surf Coat Technol. 2012;206(19):4021–4026. DOI:10.1016/j.surfcoat.2012.03.082.
  • Selvan J S, Subramanian K, Nath AK, et al. Laser boronising of Ti–6Al–4V as a result of laser alloying with pre-placed BN. Mater Sci Eng, A. 1999;260(1):178–187. DOI:10.1016/S0921-5093(98)00964-2.
  • Molian PA, Hualun L. Laser cladding of ti-6al-4v with BN for improved wear performance. Wear. 1989;130(2):337–352. DOI:10.1016/0043-1648(89)90187-7.
  • Ju H, Lin C-x, Zhang J-q, et al. Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing. Optoelectro Lett. 2016;12(5):344–348. DOI:10.1007/s11801-016-6131-1.
  • Qiao SJ, Liu XB, Zhai YJ, et al. Study on laser-alloyed self-lubricating anti-wear composite coating after ageing treatment. Mater Sci Technol. 2016;32(13):1395–1402. DOI:10.1080/02670836.2015.1126906.
  • Shen Z, Sui H, Kerr V, et al. Effect of heat treatment on the interfacial bonding between SiC coating and alumina plate. Surf Eng. 2020;36(4):397–404. DOI:10.1080/02670844.2019.1625128.
  • Masaylo DV, Orlov AV, Igoshin SD. Effect of heat treatment on the structure and phase composition of a high-temperature nickel alloy obtained by laser cladding. Met Sci Heat Treat. 2019;60(11):728–733. DOI:10.1007/s11041-019-00347-9.
  • Ding L, Hu S, Quan X, et al. Effect of aging treatment on microstructure and properties of VN alloy reinforced Co-based composite coatings by laser cladding. Mater Charact. 2017;129:80–87. DOI:10.1016/j.matchar.2017.04.030.
  • Lin J, Chen C, Zhang M, et al. The effects of heat treatment on microstructure and mechanical properties of Tribaloy 400 coatings deposited by laser cladding. J Mater Eng Perform. 2018;27(12):6339–6348. DOI:10.1007/s11665-018-3762-3.
  • Liu X-B, Liu H-Q, Meng X-J, et al. Effects of aging treatment on microstructure and tribological properties of nickel-based high-temperature self-lubrication wear resistant composite coatings by laser cladding. Mater Chem Phys. 2014;143(2):616–621. DOI:10.1016/j.matchemphys.2013.09.043.
  • Liu CM, Wang HM, Tian XJ, et al. Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng, A. 2013;586:323–329. DOI:10.1016/j.msea.2013.08.032.
  • Liu CM, Wang HM, Tian XJ, et al. Subtransus triplex heat treatment of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng, A. 2014;590:30–36. DOI:10.1016/j.msea.2013.10.002.
  • Shiao M-H, Lin C-T, Huang HJ, et al. Novel gold dendritic nanoflowers deposited on titanium nitride for photoelectrochemical cells. J Solid State Electrochem. 2018;22(10):3077–3084. DOI:10.1007/s10008-018-4004-1.
  • Gao Q, Yan H, Qin Y, et al. Laser cladding Ti-Ni/TiN/TiW+TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy. Opt Laser Technol. 2019;113:182–191. DOI:10.1016/j.optlastec.2018.12.046.
  • Jin G, Li Y, Cui H, et al. Microstructure and tribological properties of in situ synthesized TiN reinforced Ni/Ti alloy clad layer prepared by plasma cladding technique. J Mater Eng Perform. 2016;25(6):2412–2419. DOI:10.1007/s11665-016-2058-8.
  • Feng H, Zhou Y, Jia D, et al. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Cryst Growth Des. 2006;6(7):1626–1630. DOI:10.1021/cg050443k.
  • Panda KB, Ravi Chandran KS. Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties. Metall Mater Trans A. 2003;34(6):1371–1385. DOI:10.1007/s11661-003-0249-z.
  • Tian YS. Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti–6Al–4V alloy. Mater Lett. 2010;64(22):2483–2486. DOI:10.1016/j.matlet.2010.08.014.
  • Kooi BJ, Pei YT, De Hosson JTM. The evolution of microstructure in a laser clad TiB–Ti composite coating. Acta Mater. 2003;51(3):831–845. DOI:10.1016/S1359-6454(02)00475-5.
  • Lin Y, Jiang C, Lin Z, et al. Laser in-situ synthesis of high aspect ratio TiB fiber bundle reinforced titanium matrix composite coating. Opt Laser Technol. 2019;115:364–373. DOI:10.1016/j.optlastec.2019.02.047.
  • Wang C, Monclús MA, Yang L, et al. Effect of nanoscale α precipitation on slip activity in ultrastrong beta titanium alloys. Mater Lett. 2020;264:127398. DOI:10.1016/j.matlet.2020.127398.
  • Wang M, Lu Y, Pang B, et al. Fine alpha in current and newly developed Ti alloys. Acta Mater. 2019;173:242–248. DOI:10.1016/j.actamat.2019.05.022.
  • Chen W, Cao S, Kou W, et al. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates. Acta Mater. 2019;170:187–204. DOI:10.1016/j.actamat.2019.03.034.
  • Liu CM, Tian XJ, Wang HM, et al. Obtaining bimodal microstructure in laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng, A. 2014;609:177–184. DOI:10.1016/j.msea.2014.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.