545
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Superhydrophobic microspiked surface structures by ultrashort laser patterning

ORCID Icon, , &
Pages 1266-1276 | Received 02 Nov 2020, Accepted 07 Jan 2021, Published online: 27 Jan 2021

References

  • Jagdheesh R, Diaz M, Marimuthu S, et al. Robust fabrication of μ-patterns with tunable and durable wetting properties: hydrophilic to ultrahydrophobic via a vacuum process. J Mater Chem A. 2017;5(15):7125–7136. doi:https://doi.org/10.1039/C7TA01385J.
  • Liu C, Ju J, Zheng Y, et al. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. ACS Nano. 2014;8(2):1321–1329.
  • Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed. 2015;54(11):3387–3399.
  • Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nat Rev Mater. 2017;2:17036.
  • Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc. 2016;138(6):1727–1748.
  • Jagdheesh R. Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses. Langmuir. 2014;30(40):12067–12073.
  • Feng X, Feng L, Jin M, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc. 2004;126(1):62–63.
  • Yang X, Song J, Liu J, et al. A twice electrochemical-etching method to fabricate superhydrophobic-superhydrophilic patterns for biomimetic fog harvest. Sci Rep. 2017;7(1):8816.
  • Hao L, Yu S, Han X, et al. Design of submicron structures with superhydrophobic and oleophobic properties on zinc substrate. Mater Des. 2015;85:653–660.
  • Chen A, Ding S, Huang J, et al. Fabrication of superrepellent microstructured polypropylene/graphene surfaces with enhanced wear resistance. J Mater Sci. 2019;54(5):3914–3926.
  • Bormashenko E, Stein T, Whyman G, et al. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir. 200601;22(24):9982–9985.
  • Kwon MH, Shin HS, Chu CN. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition. Appl Surf Sci. 2014;288:222–228.
  • Martínez-Calderon M, Rodríguez A, Dias-Ponte A, et al. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Appl Surf Sci. 2016;374:81–89.
  • Dai FZ, Wen DP, Zhang YK, et al. Micro-dimple array fabricated on surface of Ti6Al4 V with a masked laser ablation method in air and water. Mater Des. 2015;84:178–184.
  • Jagdheesh R, Pathiraj B, Karatay E, et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces. Langmuir. 2011;27(13):8464–8469.
  • Giannuzzi G, Gaudiuso C, Franco CD, et al. Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays. Opt Lasers Eng. 2019;114:15–21.
  • Huerta-Murillo D, Aguilar-Morales AI, Alamri S, et al. Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications. Opt Lasers Eng. 2017;98:134–142.
  • Liu B, Jiang G, Wang W, et al. Porous microstructures induced by picosecond laser scanning irradiation on stainless steel surface. Opt Lasers Eng. 2016;78:55–63.
  • Jagdheesh R, Ocaña JL. Laser machined ultralow water adhesion surface by low pressure processing. Mater Lett. 2020;270:127721.
  • Nayak BK, Gupta MC. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt Lasers Eng. 2010;48(10):940–949.
  • Long J, Fan P, Gong D, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interfaces. 2015;7(18):9858–9865.
  • Zhang D, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. ACS Appl Mater Interfaces. 2012;4(9):4905–4912.
  • Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater. 2008;20(21):4049–4054.
  • Lutey AHA, Gemini L, Romoli L, et al. Towards laser-textured antibacterial surfaces. Sci Rep. 2018;8(1):10112.
  • Fraggelakis F, Mincuzzi G, Manek-Hönninger I, et al. Generation of micro- and nano-morphologies on a stainless steel surface irradiated with 257 nm femtosecond laser pulses. RSC Adv. 2018;8(29):16082–16087. doi:https://doi.org/10.1039/C8RA01774C.
  • Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl Surf Sci. 2009;256(1):61–66.
  • Nayak BK, Gupta MC. Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin. Opt Lasers Eng. 2010;48(10):966–973.
  • Rauh S, Wöbbeking K, Li M, et al. From femtosecond to nanosecond laser microstructuring of conical aluminium surfaces by reactive gas assisted laser ablation.Chem Phys Chem 2020;(15):1644–1652.
  • Jiang T, Koch J, Unger C, et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces. Appl Phys A. 2012;108(4):863–869.
  • Zhang Z, Gu Q, Jiang W, et al. Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface. Surf Coat Technol. 2019;363:170–178.
  • Jagdheesh R, Diaz M, Ocaña JL. Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing. RSC Adv. 2016;6(77):72933–72941. doi:https://doi.org/10.1039/C6RA12236A.
  • Jagdheesh R, Diaz M, Marimuthu S, et al. Hybrid laser and vacuum process for rapid ultrahydrophobic Ti-6Al-4 V surface formation. Appl Surf Sci. 2019;471:759–766.
  • Ngo C-V, Chun D-M. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing. Appl Surf Sci. 2017;409:232–240.
  • Ngo C-V, Chun D-M. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing. Appl Surf Sci. 2018;435:974–982.
  • Zuhlke CA, Anderson TP, Alexander DR. Fundamentals of layered nanoparticle covered pyramidal structures formed on nickel during femtosecond laser surface interactions. Appl Surf Sci. 2013;283:648–653.
  • Zuhlke CA, Anderson TP, Alexander DR. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses. Opt Express. 2013;21(7):8460–8473.
  • Tsibidis GD, Fotakis C, Stratakis E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B. 2015;92(4):041405.
  • Kuchmizhak AA, Vitrik OB, Kulchin YN. Novel hydrodynamic instability of the molten Au/Pd alloy film irradiated by tightly focused femtosecond laser pulses. Pacific Sci Rev. 2014;16(3):183–188.
  • Cavalli A, Bøggild P, Okkels F. Topology optimization of robust superhydrophobic surfaces. Soft Matter. 2013;9(7):2234–2238. doi:https://doi.org/10.1039/C2SM27214H.
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40(0):546–551. doi:https://doi.org/10.1039/TF9444000546.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem Res. 1936/08/01;28(8):988–994.
  • Quéré D. Wetting and roughness. Annu Rev Mater Res. 2008/08/01;38(1):71–99.
  • Soto D, De Larivière AB, Boutillon X, et al. The force of impacting rain. Soft Matter. 2014;10(27):4929–4934. doi:https://doi.org/10.1039/C4SM00513A.
  • Lee C, Nam Y, Lastakowski H, et al. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Soft Matter. 2015;11(23):4592–4599. doi:https://doi.org/10.1039/C5SM00825E.
  • Papadopoulos P, Mammen L, Deng X, et al. How superhydrophobicity breaks down. Proc Natl Acad Sci USA. 2013;110(9):3254–3258.
  • Hensel R, Helbig R, Aland S, et al. Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater. 2013;5:e37.
  • Hensel R, Neinhuis C, Werner C. The springtail cuticle as a blueprint for omniphobic surfaces. Chem Soc Rev. 2016;45(2):323–341. doi:https://doi.org/10.1039/C5CS00438A.
  • Strohmeier BR. Improving the wettability of aluminum foil with oxygen plasma treatments. J Adhes Sci Technol. 1992;6(6):703–718.
  • Glisenti A, Favero G, Granozzi G. Reactivity of simple alcohols on Fe2O3powders an XPS and FTIR study. J Chem Soc Faraday Trans. 1998;94(1):173–182. doi:https://doi.org/10.1039/A705704K.
  • Gregorčič P. Comment on “bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces”. ACS Appl Mater Interfaces. 2020; doi:10.1021/acsami.9b23462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.