283
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Plasma spraying of transition metal oxide coatings

, , & ORCID Icon
Pages 875-889 | Received 02 Sep 2020, Accepted 02 Feb 2021, Published online: 28 Feb 2021

References

  • Munir MT, Mansouri SS, Udugama IA, et al. Resource recovery from organic solid waste using hydrothermal processing: opportunities and challenges. Renew Sustainable Energy Rev. 2018;96:64–75.
  • Fortuny A, Bengoa C, Font J, et al. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. J Hazard Mater. 1999;64(2):181–193.
  • Kosovska H. The biological treatment of organic food waste. 2006.
  • Siemons RV, Baaijens L. Liquefaction of biomass and organic waste by intermittent fluid bed pyrolysis (IFB Pyrolysis). 2010.
  • Dumesic JA, Huber GW, Boudart M. Principles of heterogeneous catalysis. Ertl Gerhard, Knözinger Helmut, Schüth Ferdiet al. Handbook of heterogeneous catalysis: Online; Wiley online library; 2008.
  • Taboada CD, Batista J, Pintar A, et al. Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions. Appl Catal B. 2009;89(3):375–382.
  • Pintar A, Batista J, Tišler T. Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl Catal B. 2008;84(1):30–41.
  • Perego C, Villa P. Catalyst preparation methods. Catal Today. 1997;34(3):281–305.
  • Schwarz JA, Contescu C, Contescu A. Methods for preparation of catalytic materials. Chem Rev. 1995;95(3):477–510.
  • Thayagaraja R, Cheng SY, Jones MI, et al. Catalytic wet oxidation of glucose as model compound of wastewater over copper/rare earth oxides catalysts. J Water Process Eng. 2020;36:101251.
  • Gomes H, Selvam P, Dapurkar S, et al. Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous Mesoporous Mater. 2005;86(1–3):287–294.
  • Barbier J, Oliviero L, Renard B, et al. Role of ceria-supported noble metal catalysts (Ru, Pd, Pt) in wet air oxidation of nitrogen and oxygen containing compounds. Topics Catal. 2005;33(1):77–86.
  • Imamura S, Hirano A, Kawabata N. Wet oxidation of acetic acid catalyzed by Co-Bi complex oxides. Ind Eng Chem Prod Res Dev. 1982;21(4):570–575.
  • Baloyi SJ, Moma JA. Catalytic wet air oxidation of phenol by cordierite honeycomb washcoated with Al/Zr pillared bentonite in a plug flow reactor. J Env Chem Eng. 2020;8(5):104186.
  • Jeon W, Choi I-H, Park J-Y, et al. Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin. Catal Today. 2020;352:95–103.
  • Massa P, Ivorra F, Haure P, et al. Catalytic wet air oxidation of phenol aqueous solutions by 1% Ru/CeO2–Al2O3 catalysts prepared by different methods. Catal Commun. 2007;8(3):424–428.
  • Brussino P, Gross MS, Banús ED, et al. Cuo/TiO2-ZrO2 wire-mesh catalysts for phenol wet oxidation: substrate effect on the copper leaching. Chem Eng Process. 2019;146:107686.
  • Fauchais PL, Joachim VR H, Maher I B. Thermal spray fundamentals from powder to part. New York: Springer Science and Business Media; 2014.
  • Davis JR. Handbook of thermal spray technology. USA: ASM International; 2004.
  • Amsellem O, Borit F, Guipont V, et al. A composite approach to Al2O3 based plasma-sprayed coatings. Surface modification technologies. Proceedings of the 20th International Conference on Surface Modification Technologies. 2007: ASM International.
  • Ang ASM, Berndt CC. A review of testing methods for thermal spray coatings. Int Mater Rev. 2014;59(4):179–223.
  • Vanysek P. In: Lide DR, editor. CRC handbook of chemistry and physics, Electrochemical Series. 91 ed. Boca Raton (FL): CRC Press; 2005.
  • Hall DS., Bock C, Macdougall BR. The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. Journal of the Electrochemical Society. 2013;160(3):160.
  • Chen K, Xue D. Reaction route to the crystallization of copper oxides. Appl Sci Converg Technol. 2014 01/30;23(1):14–26.
  • Medford AJ, Vojvodic A, Hummelshøj JS, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal. 2015;328:36–42.
  • Grasselli RK. Fundamental principles of selective heterogeneous oxidation catalysis. Top Catal. 2002 Oct. 1;21(1):79–88.
  • Ertl G Dynamics of reactions at surfaces. Advances in catalysis. 45. Berlin, Germany: Academic Press; 2000. p. 1–69.
  • Langmuir I. Part II. – “Heterogeneous reactions”. Chemical reactions on surfaces. Trans Faraday Soc. 1922;17:607–620.
  • Fauchais P, Vardelle A. Thermal sprayed coatings used against corrosion and corrosive wear. Advanced plasma spray applications. France: InTech; 2012.
  • Brunet C, Dallaire S. The importance of particle size distribution on the plasma spraying of TiC. Surf Coat Technol. 1987;31(1):1–10.
  • Neumann J, Zhong T, Chang Y. The Ni− O (Nickel-oxygen) system. Bull Alloy Phase Diagrams. 1984;5(2):141–144.
  • Schneider SJ. Compilation of the melting points of the metal oxides. 63. Washington D. C.: US Department of Commerce, National Bureau of Standards; 1963.
  • Ohmori A, Park KC, Inuzuka M, et al. Electrical conductivity of plasma-sprayed titanium oxide (rutile) coatings [article]. Thin Solid Films. 1991;201(1):1–8.
  • Ctibor P, Seshadri RC, Henych J, et al. Photocatalytic and electrochemical properties of single- and multi-layer sub-stoichiometric titanium oxide coatings prepared by atmospheric plasma spraying. J Adv Ceramics. 2016;5(2):126–136.
  • Tu X, Gallon HJ, Whitehead J. Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge. Catal Today. 2013;211:120–125.
  • Fridman A. Plasma chemistry. Cambridge: Cambridge University Press; 2008.
  • Fedorov AV, Kukushkin RG, Yeletsky PM, et al. Temperature-programmed reduction of model CuO, NiO and mixed CuO–NiO catalysts with hydrogen. J Alloys Compd. 2020;844:156135.
  • Richardson J. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl Catal A-Gen. 2003;246:137–150.
  • Syed A, Denoirjean A, Fauchais P, et al. On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol. 2006;200:4368–4382.
  • Grundy AN, Hallstedt B, Gauckler LJ. Assessment of the Mn-O system. J Phase Equilib. 2003;24(1):21–39.
  • Zupanič F. Extracting electron backscattering coefficients from backscattered electron micrographs. Mater Charact. 2010;61(12):1335–1341.
  • Chang CJ, Li S-S, Ko C-M. Catalytic wet oxidations of phenol- and p-chlorophenol-contaminated waters. J Chem Technol Biotechnol. 1995;64(3):245–252.
  • Belkacemi K, Larachi F, Hamoudi S, et al. Catalytic wet oxidation of high-strength alcohol-distillery liquors. Appl Catal A. 2000;199(2):199–209.
  • Birks N. Introduction to the high-temperature oxidation of metals. 2nd ed. (Meier GH, Pettit FS, editors.) Cambridge, UK: Cambridge University Press; 2006.
  • Sundman B. An assessment of the Fe-O system. J Phase Equilib. 1991 Apr. 1;12(2):127–140.
  • Liu Y, Sun DZ. Development of Fe2O3-CeO2-TiO2/gamma-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition. Appl Catal, B. 2007;72(3–4):205–211.
  • Schramm L, Behr G, Löser W, et al. Thermodynamic reassessment of the Cu-O phase diagram. J Phase Equilib Diffus. 2005;26(6):605–612.
  • Hallstedt B, Risold D, Gauckler LJ. Thermodynamic assessment of the copper-oxygen system. J Phase Equilib. 1994 Oct. 1;15(5):483–499.
  • Mantzavinos D, Hellenbrand R, Livingston AG, et al. Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, reaction pathways and catalyst leaching. Appl Catal B. 1996;7(3):379–396.
  • Álvarez PM, McLurgh D, Plucinski P. Copper oxide mounted on activated carbon as catalyst for wet air oxidation of aqueous phenol. 2. Catalyst stability. Ind Eng Chem Res. 2002;41(9):2153–2158.
  • Eyer S, Bhargava S, Tardio J, et al. Selective organic removal from the alumina industrial liquor:  wet oxidation and catalytic wet oxidation of disodium malonate. Ind Eng Chem Res. 2002;41(5):1166–1170.
  • Wriedt H. The Fe-O (iron-oxygen) system. J Phase Equilib. 1991;12(2):170–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.