194
Views
0
CrossRef citations to date
0
Altmetric
Articles

High-temperature wear behaviour of ZrC/NbC-reinforced CrMnFeCoNi coatings

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 778-785 | Received 27 Aug 2022, Accepted 27 Nov 2022, Published online: 07 Dec 2022

References

  • Fotovvati B, Dehghanghadikolaei A, Namdari N. Laser-assisted coating techniques and surface modifications: a short review. Part Sci Technol. 2021;39(6):738–747. doi:10.1080/02726351.2020.1812778.
  • Dong WL, Yang XF, Song F, et al. Anti-friction and wear resistance analysis of cemented carbide coatings. Int J Adv Manuf Technol. 2022;122:2795–2821. doi:10.1007/s00170-022-10092-8.
  • Yin YC, Zhu S, Chang Q, et al. Improved wear resistance and mechanical properties of Al matrix with TiAl-based coatings. Surf Eng. 2021;37(11):1440–1448. doi:10.1080/02670844.2021.1971431.
  • Betsofen SY, Antipov VV, Knyazev MI. Al-Cu-Li and Al-Mg-Li alloys: phase composition, texture, and anisotropy of mechanical properties (review). Russ Metall. 2016;2016(4):326–341. doi:10.1134/S0036029516040042.
  • Kaiming W, Yulong L, Hanguang F, et al. A study of laser cladding NiCrBSi/Mo composite coatings. Surf Eng. 2018;34(4):267–275. doi:10.1080/02670844.2016.1259096.
  • Nair AM, Muvvala G, Nath AK. A study on in-situ synthesis of TiCN metal matrix composite coating on Ti–6Al–4V by laser surface alloying process. J Alloy Compd. 2019;810:151901. doi:10.1016/j.jallcom.2019.151901.
  • Liu YH, Li J, Xuan FZ. Fabrication of TiC reinforced Ni based coating by laser cladding. Surf Eng. 2012;28(8):560–563. doi:10.1179/1743294412Y.0000000026.
  • Wang QY, Pei R, Liu S, et al. Microstructure and corrosion behavior of different clad zones in multi-track Ni-based laser-clad coating. Surf Coat Technol. 2020;402:126310. doi:10.1016/j.surfcoat.2020.126310.
  • Patel P, Roy A, Sharifi N, et al. Tribological performance of High-Entropy Coatings (HECs): a review. Materials. 2022;15:3699. doi:10.3390/ma15103699.
  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi:10.1002/adem.200300567.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218. doi:10.1016/j.msea.2003.10.257.
  • Senkov ON, Miracle DN, Chaput KJ, et al. Development and exploration of refractory high entropy alloys—A review. J Mater Res. 2018;33:3092–3128. doi:10.1557/jmr.2018.153.
  • Wang JY, Zhang BS, Yu YQ, et al. Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf Coat Technol. 2020;384:125337. doi:10.1016/j.surfcoat.2020.125337.
  • Verma A, Tarate P, Abhyankar AC, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scr Mater. 2019;161:28–31. doi:10.1016/j.scriptamat.2018.10.007.
  • Han B, Lin JY, Han XR, et al. Effect of CeO2 on high-temperature wear resistance of WC/Fe-based coatings. Surf Eng. 2021;37(8):982–990. doi:10.1080/02670844.2020.1848008.
  • Pierson H. Handbook of refractory carbides and nitrides. Westwood/Park Ridge (NJ): William Andres Publishing/Noyes; 1996.
  • Ghanbariha M, Farvizi M, Ebadzadeh T, et al. Effect of ZrO2 particles on the nanomechanical properties and wear behavior of AlCoCrFeNi–ZrO2 high entropy alloy composites. Wear. 2021;484:204032. doi:10.1016/j.wear.2021.204032.
  • Li XF, Feng YH, Liu B, et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloy Compd. 2019;788:485–494. doi:10.1016/j.jallcom.2019.02.223.
  • Liu H, Liu J, Chen PJ, et al. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding. Opt Laser Technol. 2019;118:140–150. doi:10.1016/j.optlastec.2019.05.006.
  • Peng YB, Zhang W, Li TC, et al. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int J Refract Met H. 2019;84:105044. doi:10.1016/j.ijrmhm.2019.105044.
  • Chen LY, Zhao Y, Meng FW, et al. Effect of TiC content on the microstructure and wear performance of in situ synthesized Ni-based composite coatings by laser direct energy deposition. Surf Coat Technol. 2022;444:128678. doi:10.1016/j.surfcoat.2022.128678.
  • Sun D, Cai YC, Zhu LS, et al. High-temperature oxidation and wear properties of TiC-reinforced CrMnFeCoNi high entropy alloy composite coatings produced by laser cladding. Surf Coat Technol. 2022;438:128407. doi:10.1016/j.surfcoat.2022.128407.
  • Zhang BS, Yu YQ, Zhu SS, et al. Microstructure and wear properties of TiN–Al2O3–Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating. Mater Chem Phys. 2022;276:125352. doi:10.1016/j.matchemphys.2021.125352.
  • Xiong JK, Sun D, Dong N, et al. Oxidation mechanism of TiC reinforced CrMnFeCoNi composite coatings by laser cladding at 600°C/750°C/900°C. Mater Lett. 2022;324:132710. doi:10.1016/j.matlet.2022.132710.
  • Sun D, Zhu LS, Cai YC, et al. Tribology comparison of laser-cladded CrMnFeCoNi coatings reinforced by three types of ceramic (TiC/NbC/B4C). Surf Coat Technol. 2022;450:129013. doi:10.1016/j.surfcoat.2022.129013.
  • Xin BB, Zhang AJ, Han JS, et al. Tuning composition and microstructure by doping Ti and C for enhancing mechanical property and wear resistance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy matrix composites. J Alloy Compd. 2020;836:15523. doi:10.1016/j.jallcom.2020.155273.
  • Nie XJ, Chen Z, Qi Y, et al. Effect of defocusing distance on laser powder bed fusion of high strength Al–Cu–Mg–Mn alloy. VRP. 2020;15(5):1–15. doi:10.1080/17452759.2020.1760895.
  • Zhang YC, Li ZG, Nie PL, et al. Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf Eng. 2013;29(6):414–418. doi:10.1179/1743294413Y.0000000142.
  • Cai YC, Zhu LS, Cui Y, et al. Fracture and wear mechanisms of FeMnCrNiCo+x(TiC) composite high-entropy alloy cladding layers. Appl Surf Sci. 2020;543:148794. doi:10.1016/j.apsusc.2020.148794.
  • Ma MM, Wang ZM, Zeng XY. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater Sci Eng A. 2017;685:265–273. doi:10.1016/j.msea.2016.12.112.
  • Lu WJ, Zhang D, Zhang XN. Microstructural characterization of TiC in situ synthesized titanium matrix composites prepared by common casting technique. J Alloys Compd. 2001;327:248–252. doi:10.1016/S0925-8388(01)01461-X.
  • Fazliana F, Aqida SN, Ismail T. Effect of tungsten carbide partial dissolution on the microstructure evolution of a laser clad surface. Opt Laser Technol. 2020;121:105789. doi:10.1016/j.optlastec.2019.105789.
  • Cai YC, Sun D, Cui Y, et al. Effect of CoCrFeMnNi transition cladding layer on crack resistance of CoCrFeMnNi+x(TiC) composite cladding layer. Mater Lett. 2021;304:130700. doi:10.1016/j.matlet.2021.130700.
  • Ping XL, Fu HG, Sun ST, et al. Microstructure and performance of Nb-bearing Ni60A-Cr3C2 coatings manufactured by laser cladding. Surf Eng. 2020;36(12):1294–1306. doi:10.1080/02670844.2019.1631510.
  • Musil J, Kunc F, Zeman H, et al. Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surf Coat Technol. 2002;154(2–3):304–313. doi:10.1016/S0257-8972(01)01714-5.
  • Wei MX, Chen KM, Wang SQ, et al. Analysis for wear behaviors of oxidative wear. Tribol Lett. 2011;42:1–7. doi:10.1007/s11249-010-9741-y.
  • Du Y, Chen H, Yang G, et al. Effect of cobalt content on high-temperature tribological properties of TiC-Co coatings. Ceram Int. 2018;44(12):14186–14194. doi:10.1016/j.ceramint.2018.05.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.