130
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparison between heat treatment and SPS treatment on CoCrFeMnNi/WC coatings

, & ORCID Icon
Pages 742-751 | Received 12 Jul 2022, Accepted 27 Nov 2022, Published online: 09 Dec 2022

References

  • Yeh JW, Chen SK, Lin SJ. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.
  • Lu YP, Gao XZ, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143–150.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(80):1153–1158.
  • Picak S, Wegener T, Sajadifar SV, et al. On the low cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Mater. 2021;205:116540.
  • Xu Q, Guan HQ, Zhong ZH, et al. Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy. Sci Rep. 2021;11:1–8.
  • Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing. Scr Mater. 2015;99:93–96.
  • Schneeweiss O, Friák M, Dudov M, et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys Rev:B. 2017;96(1):014437.
  • Shimizu H, Yuasa M, Miyamoto H, et al. Corrosion behavior of ultrafine-grained CoCrFeMnNi high-entropy alloys fabricated by high-pressure torsion. Materials (Basel). 2022;15(3):1007, DOI:10.3390/ma15031007.
  • Won JW, Lee S, Park SH, et al. Ultrafine-grained CoCrFeMnNi high-entropy alloy produced by cryogenic multi-pass caliber rolling. J Alloy Comp. 2018;742:290–295.
  • Zheng F, Li XF, Song XL, et al. Hydrogen embrittlement of CoCrFeMnNi high-entropy alloy compared with 304 and IN718 alloys. Metals (Basel). 2022;12(6):998.
  • Lam TN, Luo MY, Kawasaki T, et al. Tensile response of As-cast CoCrFeNi and CoCrFeMnNi high-entropy alloys. Crystals (Basel). 2022;12(2):157.
  • Thurston KVS, Gludovatz B, Qin Y, et al. Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy. J Alloy Comp. 2019;794:525–533.
  • Tirunilai AS, Sas J, Weiss KP, et al. Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J Mater Res. 2018;33(19):3287–3300.
  • Wang B, Fu A, Huang X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. J Mater Eng Perform. 2016;25:2985–2992. DOI:10.1007/s11665-016-2105-5.
  • Abbasi E, Dehghani K. Cryogenic treatment of CoCrFeMnNi(NbC) high-entropy alloys. J Mater Eng Perform. 2019;28:6779–6788. DOI:10.1007/s11665-019-04439-8.
  • Li HG, Che PC, Yang XK, et al. Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature. Rare Met. 2022;41:1210–1216. DOI:10.1007/s12598-021-01867-1.
  • Tasan CC, Deng Y, Pradeep KG, et al. Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. JOM. 2014;66:1993–2001. DOI:10.1007/s11837-014-1133-6.
  • Liu T, Gao Y, Bei H, et al. In situ neutron diffraction study on tensile deformation behavior of carbon-strengthened CoCrFeMnNi high-entropy alloys at room and elevated temperatures. J Mater Res. 2018;33(19):3192–3203. DOI:10.1557/jmr.2018.180.
  • Arshad M, Amer M, Hayat Q, et al. High-entropy coatings (HEC) for high-temperature applications: materials, processing, and properties. Coatings. 2022;12(5):691.
  • Nakajo H, Nishimoto A. Boronizing of CoCrFeMnNi high-entropy alloys using spark plasma sintering. J Manuf Mater Process. 2022;6(2):29. DOI:10.3390/jmmp6020029.
  • Li B, Zhang L, Yang B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Compos Commun. 2020;19:56–60.
  • Bao WZ, Chen J, Xie GQ. Optimized strength and conductivity of multi-scale copper alloy/metallic glass composites tuned by a one-step spark plasma sintering (SPS) process. J Mater Sci Technol. 2022;128:22–30.
  • Mondal D, Sarkar SK, Oh IH, et al. Comparative study of microstructures and material properties in the vacuum and spark plasma sintered Ti-calcium phosphate composites. Mater Trans. 2011;52(7):1436–1442.
  • Kuo CH, Chien HS, Hwang CS, et al. Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering. Mater Trans. 2011;52(4):795–801.
  • Cai LL, Li P, Wang P. Duration of thermal stability and mechanical properties of Mg2Si/Cu thermoelectric joints. J Electron Mater. 2018;47(5):2591–2599.
  • Zhang J, Tu R, Goto T. Preparation of Ni-cBN composites by spark plasma sintering. J jpn soc Powder Powder Metal. 2012;59(7):410–271.
  • Beynet Y, Izoulet A, Guillemet-Fritsch S, et al. ZnO-based varistors prepared by spark plasma sintering. J Eur Ceram Soc. 2015;35(4):1199–1208.
  • Vladimir S. Features of electroplastic effect in alloys with martensite transformation. Acta Metal Sin (Eng Lett). 2018;31(12):1305–1310.
  • Sujinthan M, Joseph Francis L. Superplastic forming using pulse current. Inter J Eng Technol Res. 2015;4(4):1358–1361.
  • Sheng YY, Hua YL, Wang XJ, et al. Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties. Materials (Basel). 2018;11:185.
  • Guo J, Xiao LC, Wen KZ, et al. The tensile deformation behavior of AZ31B magnesium alloy sheet under intermittent pulse current. Pro Ins Mech Eng. 2022;236(1):471–480.
  • Noell PJ, Rodelas JM, Ghanbari ZN, et al. Microstructural modification of additively manufactured metals by electropulsing. Addit Manuf. 2020;33:101128.
  • Andre D, Burlet T, Körkemeyer F. Investigation of the electroplastic effect using nanoindentation. Mater Des. 2019;183:108153.
  • Xie SY, Li RD, Tang LJ, et al. Effect of pulse current on the diffusion behavior of FeCoCrNiMox-Al couples. Mater Lett. 2019;253:381–383.
  • Zhao S, Zhang R, Chong Y, et al. Defect reconfiguration in a Ti–Al alloy via electroplasticity. Nat Mater. 2021;20:468–472.
  • Landauer R, Woo JW. Driving force in electromigration. Phys Rev B. 1974;10(4):1266.
  • Conrad H. Enhanced phenomena in metals with electric and magnetic fields: I electric fields. Mater Trans. 2005;46(6):1083–1087.
  • Hosford WF. Mechanical behavior of materials. New York (NY): Cambridge University Press; 2005.
  • Hìrsch PB, Argon A. The physics and strength of plasticity. (MA): MIT Press, Cambridge; 1969.
  • Nembach E. Particle strengthening of metals and alloys. New York (NY): Wiley; 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.