277
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The chemical process for materials deposition in aqueous solution: a review

ORCID Icon, , , & ORCID Icon
Pages 907-929 | Received 11 Jul 2022, Accepted 02 Mar 2023, Published online: 22 Mar 2023

References

  • Hodes G. Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys Chem Chem Phys. 2007;9:2181–2196.
  • Rosenheim A, Stadler W. Über Verbindungen des Thiokarbamids und Xanthogenamids mit Salzen des einwertigen Kupfers. Z Anorg Allg Chem. 1906;49:1–12.
  • Rosenheim A, Mayer VJ. Über die Thiokarbamidverbindungen zweiwertiger Metallsalze. Z Anorg Allg Chem. 1906;49:13–27.
  • Ezekoye BA, Offor PO, Ezekoye VA, et al. Chemical bath deposition technique of thin films: a review. Int J Sci Res. 2013;2:452–456.
  • Bode DE. Physics of thin films. New York (NY): Academic Press; 1966.
  • Hass G, Francombe MH, Vossen JL. Physics of thin films: advances in research and development. New York (NY): Academic Press; 1982.
  • Chopra KL, Das SR. Thin film solar cells. New York (NY): Plenum Press; 1983.
  • Birkmire RW, McCandless BE, Shafarman WN, et al. Approaches for high efficiency CuInSe2 solar cells. 9th ECPV Solar Energy Conference, 134; 1989. Freiberg, Germany.
  • Mauch RH, Ruckh M, Hedström J, et al. 10th ECPV Solar Energy Conf. 1415, Lisbon, Portugal, 1991.
  • Chu TL, Chu SS, Ferekides C, et al. 13.4% efficient thin-film CdS/CdTe solar cells. J Appl Phys. 1991;70:7608.
  • Chu TL, Chu SS, Schultz N, et al. Solution-grown cadmium sulfide films for photovoltaic devices. J Electrochem Soc. 1992;139:2443.
  • Khatri RP, Patel AJ. A comprehensive review on chemical bath deposited ZnS thin film. Int J Res Appl Eng Sci Tech. 2018;6:1705–1722.
  • Deo SR, Singh AK, Deshmukh L, et al. Metal chalcogenide nanocrystalline solid thin films. J Electron Mater. 2015;44:4098–4127.
  • Esparza-Ponce HE, Hernández-Borja J, Reyes-Rojas A, et al. Growth technology, X-ray and optical properties of CdSe thin films. Mater Chem Phys. 2009;113:824–828.
  • Agawane GL, Shin SW, Suryavanshi MP, et al. Novel reduced toxic route synthesis and characterization of chemical bath deposited ZnSe thin films. Ceram Int. 2014;40:367–374.
  • Barrios-Salgado E, Nair MTS, Nair PK, et al. Chemically deposited thin films of PbSe as an absorber component in solar cell structures. Thin Solid Films. 2011;519:7432–7437.
  • Chavhan SD, Mane RS, Lee W, et al. Study on photoelectrochemical solar cells of nanocrystalline Cd0.7Zn0.3Se-water soluble conjugated polymer. Electrochim Acta. 2009;54:3169–3175.
  • Mariappan R, Ponnuswamy V, Ragavendar M. Characterization of CdS1–Se thin films by chemical bath deposition technique. Optik. 2012;123:1196–1200.
  • Carolan D. Recent advances in germanium nanocrystals: synthesis, optical properties and applications. Prog Mater Sci. 2017;90:128–158.
  • Shah AY, Kedarnath G, Tyagi A, et al. Germanium xanthates: versatile precursors for photo responsive germanium sulfide nanostructures. Chem Select. 2017;2:4598–4604.
  • Oliva-Avilés AI, Patiño R, Oliva AI. CdS films deposited by chemical bath under rotation. Appl Surf Sci. 2010;256:6090–6095.
  • Vorobiev YV, Horley PP, Hernández-Borja J, et al. The effects of porosity on optical properties of semiconductor chalcogenide films obtained by the chemical bath deposition. Nanoscale Res Lett. 2012;7:483.
  • Sahraei R, Daneshfar A, Goudarzi A, et al. Optical properties of nanocrystalline ZnS:Mn thin films prepared by chemical bath deposition method. J Mater Sci Mater Electron. 2013;24:260–266.
  • Agawane GL, Shin SW, Kim MS, et al. Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers. Curr Appl Phys. 2013;13:850–856.
  • Yeh TH, Hsu C-H, Ho W-H, et al. An ammonia-free chemical-bath-deposited ZnS(O,OH) buffer layer for flexible Cu(In,Ga)Se2 solar cell application: an eco-friendly approach to achieving improved stability. Green Chem. 2016;18:5212–5218.
  • Najm AS, Naeem HS, Alabboodi KO, et al. New systematic study approach of green synthesis CdS thin film via salvia dye. Sci Rep. 2022;12:12521.
  • García-Valenzuela JA, Castelo-González OA, Baez-Gaxiola MR, et al. Detailed analysis of five aspects addressed to minimize costs and waste in the chemical bath deposition of CdS films using the CdB–AC6H5O7–AOH–(NH2)2CS system. Mater Sci Appl. 2013;4:386–405.
  • Sinha T, Lilhare D, Khare A. Effects of various parameters on structural and optical properties of CBD-grown ZnS thin films: a review. J Electron Mater. 2018;47:1730–1751.
  • Pawar SM, Pawar BS, Kim JH, et al. Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr Appl Phys. 2011;11:117–161.
  • Ho SM. Role of complexing agent in chemical bath deposition of thin films: a review. Aust J Basic Appl Sci. 2015;9:625–629.
  • Mane RS, Lokhande CD. Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys. 2000;65:1–31.
  • Hone FG, Abza T. Short review of factors affecting chemical bath deposition method for metal chalcogenide thin films. Int J Thin Films Sci Technol. 2019;8:43–53.
  • Savadogo O. Chemically and electrochemically deposited thin films for solar energy materials. Sol Energy Mater Sol Cells. 1998;52:361–388.
  • Heredia-Cancino JA, Salcido O, Britto-Hurtado R, et al. Cds/PbSe heterojunction made via chemical bath deposition and ionic exchange processes to develop low-cost and scalable devices. Appl Sci. 2021;11:10914.
  • Oliva AI, Corona JE, Patiño R, et al. Chemical bath deposition of CdS thin films doped with Zn and Cu. Bull Mat Sci. 2014;37:247–255.
  • Garcia LV, Mendivil MI, García Guillen G, et al. CdS thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci. 2015;336:329–334.
  • Diaz-Grijalva OI, Berman-Mendoza D, Flores-Pacheco A, et al. Cu-doped CdS thin films by chemical bath deposition and ion exchange. J Mater Sci Mater Electron. 2020;31:1722–1730.
  • Beggas A, Benhaoua B, Attaf A, et al. Growth study of CdS thin films deposited by chemical bath. Optik. 2016;127:8423–8430.
  • Cheng J, Fan DB, Wang H, et al. Chemical bath deposition of crystalline ZnS thin films. Semicond Sci Technol. 2003;18:676–679.
  • Park SY, Park JE, Eom T, et al. Characterization of ZnS thin films grown using chemical bath deposition with three different complexing agents. J Nanosci Nanotechnol. 2018;18:6294–6299.
  • Luque PA, Castro-Beltran A, Vilchis-Nestor AR, et al. Influence of pH on properties of ZnS thin films deposited on SiO2 substrate by chemical bath deposition. Mater Lett. 2015;140:148–150.
  • Gopakumar N, Anjana PS, Pillai V, et al. Chemical bath deposition and characterization of CdSe thin films for optoelectronic applications. J Mater Sci. 2010;45:6653–6656.
  • Zhao Y, Yan Z, Liu J, et al. Synthesis and characterization of CdSe nanocrystalline thin films deposited by chemical bath deposition. Mater Sci Semicond Process. 2013;16:1592–1598.
  • Choi Y, Seol M, Kim W, et al. Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application. J Phys Chem C. 2014;118:5664–5670.
  • Suh Y, Suh S-H, SY L, et al. Morphological and microstructural evolution of PbSe films grown on thermally oxidized Si (111) substrates by chemical bath deposition. Thin Solid Films. 2017;628:148–157.
  • Roa S, Sandoval M, Sirena M. Chemical bath deposition of high structural and morphological quality PbSe thin films with potential optoelectronic properties for infrared detection applications. Mater Chem Phys. 2021;264:124479.
  • Moreno M, Alonzo-Medina GM, Oliva AI, et al. Cadmium sulfide thin films deposited onto MWCNT/polysulfone substrates by chemical bath deposition. Adv Mater Sci Eng. 2016:2016;2890717.
  • Tec-Sánchez JA, Alonzo-Medina GM, Maldonado RD, et al. Cds thin films deposited onto a highly transparent co-polyamide. J Mater Sci Mater Electron. 2020;31:6890–6899.
  • Tec-Yam S, Patiño R, Oliva AI. Chemical bath deposition of CdS films on different substrate orientations. Curr Appl Phys. 2011;11:914–920.
  • Froment M, Lincot D. Phase formation processes in solution at the atomic level: metal chalcogenide semiconductors. Electrochim Acta. 1995;40:1293–1303.
  • Liu Y, Tan T, Wang B, et al. Fabrication of CdS films with superhydrophobicity by the microwave assisted chemical bath deposition. J Colloid Interface Sci. 2008;320:540–547.
  • Zhai R, Wang S, Xu H, et al. Rapid formation of CdS, ZnS thin films by microwave-assisted chemical bath deposition. Mater Lett. 2005;59:1497–1501.
  • Kothari A. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods. AIP Conf Proc. 2017;1837:0040063.
  • Tsai C-J, Do H, Chang C, et al. Rapid synthesis of semipolar ZnO nanorod arrays on M-sapphire by microwave-assisted chemical bath deposition. ECS Trans. 2018;85:107.
  • Deshmukh PR, Pusawale SN, Jamadade VS, et al. Microwave assisted chemical bath deposited polyaniline films for supercapacitor application. J Alloys Compounds. 2011;509:5064–5069.
  • Obaid AS, Mahdi MA, Hassan Z, et al. Characterization of nanocrystalline PbS thin films prepared using microwave-assisted chemical bath deposition. Mater Sci Semicond Process. 2012;15:564–571.
  • Obaid AS, Mahdi MA, Hassan Z, et al. Pbs nanocrystal solar cells fabricated using microwave-assisted chemical bath deposition. Int J Hydrog Energy. 2013;38:807–815.
  • Husham M, Hassan Z, Mahdi MA, et al. Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlatt Microstruct. 2014;67:8–16.
  • Husham M, Hassan Z. Synthesis of nanocrystalline CdS thin films via microwave-assisted chemical bath deposition for highly photosensitive and rapid response photodetectors. J Nanoelectron Optoelectron. 2015;10:783–789.
  • Bagade CS, Ghanwat VB, Kharade GSD, et al. Rapid formation of ternary CdZnSe2chalcogenide thin film by microwave assisted chemical bath deposition. Macromol Symp. 2016;362:60–64.
  • Shinde VR, Gujar TP, Noda T, et al. Growth of shape- and size-selective zinc oxide nanorods by a microwave-assisted chemical bath deposition method: effect on photocatalysis properties. Chem Eur J. 2010;16:10569–10575.
  • Husham M, Hamidon MN, Paiman S, et al. Synthesis of ZnO nanorods by microwave-assisted chemical-bath deposition for highly sensitive self-powered UV detection application. Sens Actuators A Phys. 2017;263:166–173.
  • Song X, Liu Z, Tian T, et al. Lead sulfide films synthesized by microwave-assisted chemical bath deposition method as efficient counter electrodes for CdS/CdSe sensitized ZnO nanorod solar cells. Sol Energy. 2019;177:672–678.
  • Goudarzi A, Langroodi SM, Arefkhani M, et al. Study of optical properties of ZnS and MnZnS (ZnS/MnS) nanostructure thin films; prepared by microwave-assisted chemical bath deposition method. Mater Chem Phys. 2022;275:125103.
  • Hussain T, Aslam S, Mustafa F, et al. Study of the extrinsic properties of copper doped cadmium sulfide thin film by hydrothermal assisted CBD method. Mater Res Express. 2019;6:0045908.
  • Zhang Q, Cao J, Li H. Cds sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by hydrothermal assisted chemical bath deposition and post-annealing treatment. RSC Adv. 2015;5:107957–107963.
  • Willars-Rodríguez FJ, Chávez-Urbiola IR, Hernández-Landaverde MA, et al. Effects of tin-doping on cadmium sulfide (CdS:Sn) thin-films grown by light-assisted chemical bath deposition process for solar photovoltaic cell. Thin Solid Films. 2018;653:341–349.
  • Dhanya AC, Murali KV, Preetha KC, et al. Effect of deposition time on optical and luminescence properties of ZnS thin films prepared by photo assisted chemical deposition technique. Mater Sci Semicond Process. 2013;16:955–962.
  • Kumarage WGC, Wijesundera RP, Seneviratne VA, et al. Growth and characterization of EDTA assisted CBD-CdS. Mater Chem Phys. 2017;200:1–8.
  • Chebil W, Gokarna A, Fouzri A, et al. Study of the growth time effect on the structural, morphological and electrical characteristics of ZnO/p-Si heterojunction diodes grown by sol-gel assisted chemical bath deposition method. J Alloys Compounds. 2019;771:448–455.
  • Zhao Z, Wang P, Fan L, et al. A PbS film synthesized by ultrasonic wave assisted chemical bath deposition method and its application in photoelectrochemical cell. Adv Mat Res. 2013;820:3–6.
  • Kumarage WGC, Wijesundera RP, Seneviratne VA, et al. A study on the enhancement of opto-electronic properties of CdS thin films: seed-assisted fabrication. Semicond Sci Technol. 2017;32:0045014.
  • Wang J, Wang Y, Liu C, et al. Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells. Chin Phys B. 2020;29:0098802.
  • Vigil-Galán O, Pulgarín FA, Cruz-Gandarilla F, et al. Optimization of CBD-CdS physical properties for solar cell applications considering a MIS structure. Mater Des. 2016;99:254–261.
  • Ghosh B, Ghosh D, Hussain S, et al. A novel CdCl2 treatment for glass/SnO2/CBD-CdS/CdTe solar cell. Mater Sci Semicond Process. 2014;24:74–82.
  • Friedlmeier TM, Jackson P, Bauer A, et al. Improved photocurrent in Cu(In,Ga)Se2 solar cells: From 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J Photovolt. 2015;5:1487–1491.
  • Klenk R, Steigert A, Rissom T, et al. Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%. Prog Photovolt Res Appl. 2014;22:161–165.
  • Kobayashi T, Kao ZJL, Kato T, et al. A comparative study of Cd- and Zn-compound buffer layers on Cu(In1−x,Gax)(Sy,Se1−y)2thin film solar cells. Prog Photovolt Res Appl. 2016;24:389–396.
  • Skelton JM, Burton LA, Oba F, et al. Metastable cubic tin sulfide: a novel phonon-stable chiral semiconductor. APL Mater. 2017;5:0036101.
  • Reghima M, Akkari A, Guasch C, et al. Structure, surface morphology, and optical and electronic properties of annealed SnS thin films obtained by CBD. J Electron Mater. 2014;43:3138–3144.
  • Gedi S, Reddy M, Kotte VR, et al. Fundamental aspects and comprehensive review on physical properties of chemically grown Tin-based binary sulfides. Nanomaterials. 2021;11:1955.
  • Cao M, Zhang BL, Li L, et al. Effects of zinc salts on the structural and optical properties of acidic chemical bath deposited ZnS thin films. Mater Res Bull. 2013;48:357–361.
  • Liu T, Ke H, Zhang H, et al. Effect of four different zinc salts and annealing treatment on growth, structural, mechanical and optical properties of nanocrystalline ZnS thin films by chemical bath deposition. Mater Sci Semicond Process. 2014;26:301–311.
  • Arandhara G, Saikia PK, Bora J. Optical and structural properties of ZnS thin films grown by chemical bath deposition technique using two different zinc salts. J Basic Appl Eng Res. 2015;2:1761–1764.
  • Nilsson KB, Eriksson L, Kessler VG, et al. The coordination chemistry of the copper(II), zinc(II) and cadmium(II) ions in liquid and aqueous ammonia solution, and the crystal structures of hexaamminecopper(II) perchlorate and chloride, and hexaamminecadmium(II)chloride. J Mol Liq. 2007;131–132:113–120.
  • Yuan X, Zhang C. Density functional theory study on the inner shell of hydrated M2+(H2O)1–7 cluster ions for M = Zn, Cd and Hg. Comput Theor Chem. 2020;1171:112666.
  • González-Panzo IJ, Martín-Várguez PE, Oliva AI. Physicochemical conditions for ZnS films deposited by chemical bath. J Electrochem Soc. 2014;161:D181–D189.
  • Bär M, Weinhardt L, Heske C, et al. Cd2+/NH3 treatment of Cu(In,Ga)(S,Se)2 thin-film solar cell absorbers: a model for the performance-enhancing processes in the partial electrolyte. Prog Photovoltaics Res Appl. 2005;13:571–577.
  • Dirkse TP. Solubility data series. Oxford: Pergamon Press; 1986.
  • Zhong Z-Y, Li Z-H, Cho E-S, et al. Effect of [Zn2+] concentration on the formation of zinc sulfide film as a buffer layer of Cu(In,Ga)Se2 thin film solar cells. ECS Trans. 2011;41:199–204.
  • Zhou L, Tang N, Wu S, et al. Influence of deposition time on ZnS thin films performance with chemical bath deposition. Phys Procedia. 2011;22:354–359.
  • Son K, Kim M, Shin J, et al. Properties of the ZnS thin film buffer layer by chemical bath deposition process with different solution concentrations and deposition time. J Korean Inst Electr Electron Mater Eng. 2014;27:269–275.
  • Hildebrandt T, Kozolinsky M, Loones N, et al. Fast chemical bath deposition process at room temperature of ZnS-based materials for buffer application in high-efficiency Cu(In,Ga)Se2-based solar cells. IEEE J Photovoltaics. 2018;8:1862–1867.
  • Babatunde RA, Bolanle YI, Adegboyo OO. Influence of Zn concentration on optical and morphological properties of ZnS thin film deposited by chemical bath deposition method for photovoltaic application. Fepi-Jopas. 2019;1:219–226.
  • Babatunde RA, Bolanle Y. Effects of thiourea concentration in formation of ZnS thin films grown by chemical bath deposition for heterojunction. Proceedings of 4th National Development Conference of the School of Pure and Applied Science, The Federal Polytechnic Ilaro, Ogun State, Nigeria, 2019 Dec 2–5. p. 139–145.
  • Hone FG, Dejene F, Chenene M, et al. Chemical bath pH influence on the structural, morphological and optical properties of zinc sulphide thin film prepared from acidic baths. Inorg Chem Commun. 2019;108:107519.
  • Yu FP, Ou SL, Yao PC, et al. Structural, surface morphology and optical properties of ZnS films by chemical bath deposition at various Zn/S molar ratios. J Nanomater. 2014:2014;594952.
  • Zein R, Alghoraibi I. Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method. J Nanomater. 2019:2019;7541863.
  • Quan T. Chemical bath deposition of ZnS buffer layers. Adv Mater Res. 2013;813:435–439.
  • Gonzalez-Chan IJ, Moguel P, Oliva AI. Deposition of ZnO thin films by chemical bath technique: physicochemical conditions and characterization. ECS J Solid State Sci Technol. 2019;8:P536–P544.
  • Rosado-Mendoza M, Oliva-Avilés AI, Oliva AI. Investigation of the selective growth of ZnO and Zn(OH)2films deposited by chemical bath near room temperature. ECS J Solid State Sci Technol. 2017;6:N45–N53.
  • Chauhan SM, Chaki HS, Deshpande MP, et al. Characterization of CBD deposited CuInSe 2 thin film. Mater Sci Semicond Process. 2018;74:329–335.
  • Gao C, Shen H, Sun L, et al. Chemical bath deposition of SnS films with different crystal structures. Mater Lett. 2011;65:1413–1415.
  • Ammar I, Gassoumi A, Akkari A, et al. Deposition of SnS thin films by chemical bath deposition method: effect of surfactants. Eur Phys J Plus. 2019;134:505.
  • Yahmadi B, Kamoun N, Guasch C, et al. Synthesis and characterization of nanocrystallized In2S3 thin films via CBD technique. Mater Chem Phys. 2011;127:239–247.
  • Li W, Liu P, Zhang K, et al. Microstructure and optical performance of In2S3 thin films grown by chemical bath deposition. Integr Ferroelectr. 2017;180:12–23.
  • Chalapathi U, Poornaprakash B, Ahn CH, et al. Rapid growth of Sb2S3 thin films by chemical bath deposition with ethylenediamine tetraacetic acid additive. Appl Surf Sci. 2018;451:272–279.
  • Hone FG, Ampong FK, Abza T, et al. The effect of deposition time on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method. Mater Lett. 2015;155:58–61.
  • Fouda AN, Marzook M, El-Khalek A, et al. Structural and optical characterization of chemically deposited PbS thin films. Silicon. 2017;9:809–816.
  • Sengupta S, Perez M, Rabkin A, et al. In situ monitoring the role of citrate in chemical bath deposition of PbS thin films. Cryst Eng Comm. 2016;18:149–156.
  • Ahmed AM, Rabia M, Shaban M. The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv. 2020;10:14458–14470.
  • Kokotov M, Biller A, Hodes G. Reproducible chemical bath deposition of ZnO by a one-step method: the importance of “contaminants” in nucleation. Chem Mater. 2008;20:4542–4544.
  • Carrillo-Castillo A, Aguirre-Tostado FS, Salas-Villaseñor A, et al. Effect of chemical bath deposition parameters on the growth of PbS thin films for TFTS applications. Chalcogenide Letters. 2013;10:105–111.
  • Jassim SAJ, Nassar EMA. Effect of deposition time on the structure, direct and indirect energy gap of nanoparticles CdO thin films deposited by chemical bath deposition technique. J Phys Conf Ser. 2021;1879:0032106.
  • Barote MA, Yadav AA, Masumdar EU. Effect of deposition parameters on growth and characterization of chemically deposited Cd1-xPbxS thin films. Chalcogenide Lett. 2011;8:129–138.
  • Sohrabi P, Ghobadi N. Optical and photocatalytic behaviors of iron selenide thin films grown by chemical bath deposition versus deposition time and annealing temperature. Appl Phys A. 2019;125:620.
  • Rodríguez-Guadarrama LA, Escorcia-García J, Alonso-Lemus IL, et al. Synthesis of π-SnS thin films through chemical bath deposition: effects of pH, deposition time, and annealing temperature. J Mater Sci Mater Electron. 2021;32:7464–7480.
  • Hodes G. Chemical solution deposition of thin films. New York (NY): Marcel Dekker, Inc.; 2003.
  • Liu Q, Mao G. Comparison OFCdS and ZnS thin films prepared by chemical bath deposition. Surf Rev Lett. 2009;16:469–474.
  • Zein R, Alghoraibi I. Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method. J Nanomaterials. 2019;2019:7541863.
  • Reyes O, Maldonado D, Escorcia-Garcia J, et al. Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films. J Mater Sci Mater Electron. 2018;29:15535–15545.
  • Gracia Pinilla MA, Moreno LC, Gordillo Guzman G. Optical and morphological properties of CdS nanoparticles thin films deposited by CBD process. Chalcogenide Lett. 2011;8:601–609.
  • Sahraei R, Noshadi S, Goudarzi A. Growth of nanocrystalline CuS thin films at room temperature by a facile chemical deposition method. RSC Adv. 2015;5:77354–77361.
  • Moreno-Regino VD, Castañeda-de-la-Hoya FM, Torres-Castanedo CG, et al. Structural, optical, electrical and morphological properties of CdS films deposited by CBD varying the complexing agent concentration. Results Phys. 2019;13:102238.
  • Altiokka B. Effects of inhibitor on PbS thin films obtained by chemical bath deposition. Arab J Sci Eng. 2015;40:2085–2093.
  • Hariskos D, Menner R, Jackson P, et al. New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells. Prog Photovolt. 2012;20:534–542.
  • Flores-García E, González-García P, González-Hernández J, et al. Non-toxic growth of CuxS thin films in alkaline medium by ammonia free chemical bath deposition. Optik. 2017;145:589–598.
  • Gonzalez-Chan IJ, Oliva AI. Kinetic of growth of chemically deposited ZnS films near room temperature conditions. Mater Res Express. 2019;6:0016415.
  • Rondiya S, Rokade A, Gabhale B, et al. Effect of bath temperature on optical and morphology properties of CdS thin films grown by chemical bath deposition. Energy Procedia. 2017;110:202–209.
  • Liu W-L, Chen W-J, Hsieh S-H, et al. Growth behavior of nanocrystalline ZnS thin films for solar cell using CBD technique. Procedia Eng. 2012;36:46–53.
  • Agawane GL, Shin SW, Kim MS, et al. Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers. Curr Appl Phys. 2013;13:850–856.
  • Shin SW, Kang SR, Gurav KV, et al. A study on the improved growth rate and morphology of chemically deposited ZnS thin film buffer layer for thin film solar cells in acidic medium. Sol Energy. 2011;85:2903–2911.
  • Hariech S, Aida MS, Bougdira J, et al. Cadmium sulfide thin films growth by chemical bath deposition. J Semicond. 2018;39:0034004.
  • Beddek L, Messaoudi M, Attaf N, et al. Sulfide precursor concentration and lead source effect on PbS thin films properties. J Alloys Comp. 2016;666:327–333.
  • Yahmadia B, Kamouna N, Guaschb C, et al. Synthesis and characterization of nanocrystallized In2S3 thin films via CBD technique. Mater Chem Phys. 2011;127:239–247.
  • Mohammed KA, Ahmed S, Mohammed R. Investigation of structure, optical, and electrical properties of CuS thin films by CBD technique. Crystals. 2020;10:684.
  • Abdulrahman AF, Ahmed SM, Ahmed NM, et al. Enhancement of ZnO nanorods properties using modified chemical bath deposition method: effect of precursor concentration. Crystals. 2020;10:386.
  • González-Chan IJ, Oliva AI. Kinetic of growth of chemically deposited ZnS films near room temperature conditions. Mater Res Express. 2019;6:0016415.
  • Doña JM, Herrero J. Process and film characterization of chemical-bath-deposited ZnS thin films. J Electrochem Soc. 1994;141:205–210.
  • Hubert C, Naghavi N, Etcheberry A, et al. A better understanding of the growth mechanism of Zn(SO,OH) chemical bath deposited buffer layers for high efficiency Cu(In,Ga)(S, Se)2 solar cells. Phys Stat Solid a. 2008;205:2335.
  • Vallejo W, Hurtado M, Gordillo G. Kinetic study on Zn(O,OH)S thin films deposited by chemical bath deposition. Electrochim Acta. 2010;55:5610.
  • Bhaskar PU, Babu GS, Kumar YB, et al. Effect of bath concentration, temperature on the growth and properties of chemical bath deposited ZnS films. Mater Chem Phys. 2012;134:1106.
  • González-Panzo IJ, Martín-Várguez PE, Oliva AI. Role of thiourea in the kinetic of growth of the chemical bath deposited ZnS films. J Electrochem Soc. 2014;161:D761.
  • O’Brien P, McAleese J. Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J Mater Chem. 1998;8:2309.
  • Ismail RA, Ahmed HH, Al-Samarai A-ME, et al. Effect of pH on the structural and optical properties of nanostructured CdO films grown by chemical bath deposition technique. Micro Nano Lett. 2014;9:935–939.
  • Khimani AJ, Chaki SH, Malek TJ, et al. Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques – a comparative study. Mater Res Express. 2018;5:0036406.
  • Ouafi M, Jaber B, Atourki L, et al. In situ low-temperature chemical bath deposition of CdS thin films without thickness limitation: structural and optical properties. Int J Photoenergy. 2018:2018;4549154.
  • Sengupta S, Kumar A, Jain VK. Cadmium sulfide (CdS) thin films with improved morphology for humidity sensing by chemical bath deposition at lower pH. J. Nanosci Nanotechnol. 2021;21:6035–6040.
  • Garza-Hernández R, Carrillo-Castillo A, Martínez-Landeros VH, et al. In-situ X-ray photoelectron spectroscopy analysis of the initial growth of CdS thin films by chemical bath deposition. Thin Solid Films. 2019;682:142–146.
  • Liu J, Wei A, Zhao Y. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films. J Alloys Comp. 2014;588:228–234.
  • Lee D, Ahn H, Shin H. ZnS buffer layers grown by modified chemical bath deposition for CIGS solar cells. J Electron Mater. 2018;47:3483.
  • González-Chan IJ, Pat-Herrera A, Trejo-Ramos AI, et al. Synthesis and characterisation of ZnS thin films obtained without complexing agent by the chemical bath technique. Surf Eng. 2021;37:1120–1132.
  • Suh Y, Suh SH, Lee SY, et al. Morphological and microstructural evolution of PbSe films grown on thermally oxidized Si (111) substrates by chemical bath deposition. Thin Solid Films. 2017;628:148–157.
  • Vas-Umnuay P, Chang C-H. Growth kinetics of copper sulfide thin films by chemical bath deposition. ECS J Solid State Sci Technol. 2013;2:P120–P129.
  • Trejo-Ramos AI, Martín-Várguez PE, González IJ, et al. Algorithm to obtain the species distribution diagrams and solubility curves for depositing ZnS, ZnO, and Zn(OH)2 films in aqueous solution. Comput Theor Chem. 2021;1202:113325.
  • Nair PK, Campos J, Nair MTS. Opto-electronic characteristics of chemically deposited cadmium sulphide thin films. Semicond Sci Technol. 1988;3:134–145.
  • Oliva AI, Castro-Rodríguez R, Ceh O, et al. First stages of growth of CdS films on different substrates. Appl Surf Sci. 1999;148:42–49.
  • Oliva AI, Solís-Canto O, Castro-Rodríguez R, et al. Formation of the band gap energy on CdS thin films growth by two different techniques. Thin Solid Films. 2001;391:28–35.
  • Salazar YA, Patiño R, Peña JL, et al. Physical properties of CdS/ITO thin films growth by CBD technique with substrate oscillating agitation. Brazilian J Phys. 2006;36:1058–1061.
  • Gutiérrez Lazos CD, Rosendo E, Juárez H, et al. Hexagonal phase of CdS thin films obtained by oscillating chemical bath. J Electrochem Soc. 2008;155:D158.
  • O’Brien P, Otway DJ, Smyth-Boyle D. The importance of ternary complexes in defining basic conditions for the deposition of ZnS by aqueous chemical bath deposition. Thin Solid Films. 2000;361–362:17–21.
  • Gangopadhyay U, Kim K, Dhungel SK, et al. Application of CBD-zinc sulfide film as an antireflection coating on very large area multicrystalline silicon solar cell. Adv Optoelectron. 2007;2007:018619.
  • Reinisch M, Perkins CL, Steirer KX. Quantitative study on the chemical solution deposition of zinc oxysulfide. ECS J Solid State Sci Technol. 2016;5:P58–P66.
  • González-Chan IJ, Oliva AI. Physicochemical analysis and characterization of chemical bath deposited ZnS films at near ambient temperature. J Electrochem Soc. 2016;163:D421–D427.
  • González-Chan IJ, González-Panzo IJ, Oliva AI. Synthesis of ZnS thin films by chemical bath: from room temperature to 90°C. J Electrochem Soc. 2017;164:D95–D103.
  • Rosado-Mendoza M, Oliva-Avilés AI, Oliva AI. Preferential regions of growth of chemical bath deposited ZnO and Zn(OH)2 thin films at room conditions. Thin Solid Films. 2018;645:231–240.
  • Gonzalez-Chan IJ, Moguel P, Oliva AI. Deposition of ZnO thin films by chemical bath technique: physicochemical conditions and characterization. ECS J Solid State Sci Technol. 2019;8:P536–P544.
  • Hone FG, Dejene F, Chenene M, et al. Chemical bath pH influence on the structural, morphological and optical properties of zinc sulphide thin film prepared from acidic baths. Inorg Chem Commun. 2019;108:107519.
  • Rosado-Mendoza M, Casanova D, Oliva AI. Role of ammonia on the growth mechanism of ZnO films deposited at ambient temperature. ECS J Solid State Sci Technol. 2020;9:103002.
  • Trejo-Ramos AI, González-Chan IJ, Oliva AI. Physical properties of chemically deposited ZnS thin films: role of the solubility curves and species distribution diagrams. Mater Sci Semicond Process. 2020;118:105207.
  • Hubert C, Naghavi N, Canava B, et al. Thermodynamic and experimental study of chemical bath deposition of Zn(S,O,OH) buffer layers in basic aqueous ammonia solutions. Cell results with electrodeposited CuIn(S,Se)2 absorbers. Thin Solid Films. 2007;515:6032–6035.
  • Hubert C, Naghavi N, Canava B, et al. Zinc sulfide based chemically deposited buffer layers for electrodeposited CIS solar cells). 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. Waikoloa, HI, USA; 2006. p. 588–591.
  • Ubale AU, Kulkarni DK. Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films. Bull Mater Sci. 2005;28:43.
  • Asogwa PU. Variation of optical properties with post deposition annealing in chemically deposited CdZnS thin films. Chalcogenide Lett. 2010;7(8):501–508.
  • Cao VMH, Hwang S, Lin J, et al. Performance of Cu(In, Ga)Se2 solar cells on zinc sulfide buffer layers for various power values of an intense pulsed light system. J Nanosci Nanotechnol. 2018;19:3.
  • Ernits K, Danilson M, Raudoja J, et al. Anion effect of zinc source on chemically deposited ZnS(O,OH) films. Adv Mater Sci Eng. 2009:2009;372708.
  • Ennaoui A, Bär M, Klaer J, et al. Highly-efficient Cd-free CuInS2 thin-film solar cells and mini-modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process. Prog Photovoltaics Res Appl. 2006;14:499.
  • Jeon DH, Hwang DK, Kim DH, et al. Optimization of the ZnS buffer layer by chemical bath deposition for Cu(In,Ga)Se2 solar cells. J Nanosci Nanotechnol. 2016;16:5.
  • Igweoko AE, Augustine C, Idenyi NE, et al. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film. Mater Res Express. 2018;5:036413.
  • Hong J, Lim D, Eo YJ, et al. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell. Appl Surf Sci. 2018;432:250–254.
  • Arandhara G, Bora J, Saikia PK. Effect of pH on the crystallite size, elastic properties and morphology of nanostructured ZnS thin films prepared by chemical bath deposition technique. Mater Chem Phys. 2020;241:122277.
  • Hodes G. Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys Chem Chem Phys. 2007;9:2181–2196.
  • Sawant JP, Shaikh SF, Kale RB, et al. Chemical bath deposition of CuInS2 thin films and synthesis of CuInS2 nanocrystals: a review. Eng Sci. 2000;12:1–12.
  • Ho SM. Chalcogenide thin films prepared using chemical bath deposition method: review. Res J Appl Sci Eng Technol. 2015;11:1058–1065.
  • Noman MT, Amor N, Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): a review. Crit Rev Solid State Mater Sci. 2022;47:99–141.
  • Wang X, Huang H, Liang B, et al. Zns nanostructures: synthesis, properties, and applications. Crit Rev Solid State Mater Sci. 2013;38:57–90.
  • Pattnaik A, Tomar M, Gupta V, et al. Optical study of ZnS nano spheres with varying amount of ethylenediamine for photovoltaic application. Integr Ferroelectr. 2018;194:135–144.
  • Zein R, Alghoraibi I. Influence of bath temperature and deposition time on topographical and optical properties of nanoparticles ZnS thin films synthesized by a chemical bath deposition method. J Nanomater. 2019:2019;7541863.
  • Maria KH, Sultana P, ASfia MB. Chemical bath deposition of aluminum doped zinc sulfide thin films using non-toxic complexing agent: effect of aluminum doping on optical and electrical properties. AIP Adv. 2020;10:0065315.
  • Palve AM. Deposition of zinc sulfide thin films from zinc(II) thiosemicarbazones as single molecular precursors using aerosol assisted chemical vapor deposition technique. Front. Mater. 2019;6:46.
  • Park SY, Park JE, Eom T, et al. Characterization of ZnS thin films grown using chemical bath deposition with three different complexing agents. J. Nanosci Nanotechnol. 2018;18:6294–6299.
  • Tong G, Ono LK, Liu Y, et al. Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 2021;13:155.
  • Cao M, Zhang X, Ren J, et al. Chemical bath deposition of SnS:Cu/ZnS for solar hydrogen production and solar cells. J Alloys Compd. 2021;863:158727.
  • Guire MRD, Bauermann LP, Parikh H, et al. Chemical bath deposition. In: Schneller T, Waser R, Kosec M, et al., editors. Chemical solution deposition of functional oxide thin films. Chapter 14. Vienna: Springer; 2013. p. 319–339.
  • Archbold MD, Halliday DP, Durose K, et al. Development of low temperature approaches to device quality CdS: a modified geometry for solution growth of thin films and their characterisation. Thin Solid Films. 2007;515:2954–2957.
  • Garadkar KM, Patil AA, Korake PV, et al. Characterization of CdS thin films synthesized by SILAR method at room temperature. Appl Sci Res. 2010;2:429–437.
  • Wan W, Zhang M, Zhao M, et al. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nature Comm. 2020;11:4199.
  • Kadam AN, Dhabbe RS, Kokate MR, et al. Room temperature synthesis of CdS nanoflakes for photocatalytic properties. J Mater Sci Mater Electron. 2014;25:1887–1892.
  • Hu P, Zhou D, Xu S, et al. Aqueous phase- and size-controlled synthesis, and secondary assemblies of CdS nanocrystals at room temperature. Cryst Eng Comm. 2021;24:43–47.
  • Oladeji IO, Chow L. Optimization of chemical bath deposited cadmium sulfide thin films. J Electrochem Soc. 1997;144:2342–2346.
  • Baranovska-Korczyc A, Kosciski M, Coy EL, et al. Zns coating for enhanced environmental stability and improved properties of ZnO thin films. RSC Adv. 2018;8:24411–24421.
  • Kaur N, Kaur S, Singh J, et al. A review on zinc sulphide nanoparticles: from synthesis, properties to applications. J Bioelectron Nanotechnol. 2016;1:5.
  • Huse NP, Dive AS, Upadhye DS, et al. Effect of quantum confinement on photosensitivity in ZnS thin film grown by facile chemical bath deposition. Ferroelectrics. 2017;519:170–177.
  • Trejo-Ramos AI, González-Chan IJ, Oliva AI. Physical properties of chemically deposited ZnS thin films: role of the solubility curves and species distribution diagrams. Mater Sci Semicond Process. 2020;118:105207.
  • Molefe FV, Koao LF, Dejene BF, et al. Phase formation of hexagonal wurtzite ZnO through decomposition of Zn(OH)2 at various growth temperatures using CBD method. Opt Mater. 2015;46:292–298.
  • Opasanont B, Van KT, Kuba AG, et al. Adherent and conformal Zn(S,O,OH) thin films by rapid chemical bath deposition with hexamethylenetetramine additive. Mater Interfaces. 2015;7:11516–11525.
  • Huang C-H, Jan Y-L, Chuang W-J, et al. Investigation of approaches to control the compositions of Zn(Se,OH) buffers prepared by chemical bath deposition process for Cu(In,Ga)Se2 (CIGS) solar cells. Crystals. 2018;8:343.
  • Vallejo W, Diaz-Uribe C, Quiñones C. Optical and structural characterization of Cd-free buffer layers fabricated by chemical bath deposition. Coatings. 2021;11(8):897.
  • Otis G, Nassir M, Zutta M, et al. Enantioselective crystallization of chiral inorganic crystals of ε-Zn(OH)2 with amino acids. Angew Chem Int Ed Engl. 2020;59(47):20924–20929.
  • Voon CH, Foo KL, Lim BY, et al. Metal oxide powder technologies. In: Yarub Al-Douri, editor. Metal oxide powder technologies: fundamentals, processing methods and applications. Amsterdam: Elsevier. 2020. p. 31–65,
  • Diaz C, Valenzuela ML, Laguna-Bercero MA. Solid-state preparation of metal and metal oxides nanostructures and their application in environmental remediation. Int J Mol Sci. 2022;23:1093.
  • Martínez-Gil M, Pintor-Monroy MI, Cota-Leal M, et al. Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Mater Sci Semicond Process. 2017;72:37–45.
  • Napari M, Huq TN, Hoye RLZ, et al. Nickel oxide thin films grown by chemical deposition techniques: potential and challenges in next-generation rigid and flexible device applications. InfoMat. 2021;3:536–576.
  • Rinaldi A, Pea M, Notargiacomo A, et al. A simple ball milling and thermal oxidation method for synthesis of ZnO nanowires decorated with cubic ZnO2 nanoparticles. Nanomaterials. 2021;11:475. doi:10.3390/nano11020475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.