221
Views
0
CrossRef citations to date
0
Altmetric
Articles

Production of a superhydrophobic frame-cone structure by laser etching and Ni electrodeposition

, , &
Pages 25-34 | Received 20 Dec 2022, Accepted 07 Mar 2023, Published online: 20 Mar 2023

References

  • Mishra MK, Dubey V, Mishra PM, et al. MEMS technology: a review. J Eng Res Rep. 2019;4(1):1–24. DOI: 10.9734/jerr/2019/v4i116891.
  • Ejeian F, Azadi S, Razmjou A, et al. Design and applications of MEMS flow sensors: a review. Sens Actuators, A. 2019;295:483–502. DOI: 10.1016/j.sna.2019.06.020.
  • Chircov C, Grumezescu A M. Microelectromechanical systems (MEMS) for biomedical applications. Micromachines (Basel), 2022, 13(2): 164. DOI: 10.3390/mi13020164.
  • Bhushan B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng. 2007;84(3):387–412. DOI: 10.1016/j.mee.2006.10.059.
  • Zhao YP, Yu ΤX. Failure modes of MEMS and microscale adhesive contact theory. Int J Nonlinear Sci Numer Simul. 2000;1:361–372. DOI: 10.1515/IJNSNS.2000.1.S1.361.
  • Zhu L, Xu J, Zhang Z, et al. Lotus effect surface for prevention of microelectromechanical system (MEMS) stiction. Proceedings Electronic Components and Technology, ECTC'05, IEEE; 2005, p. 1798–1801. DOI: 10.1109/ECTC.2005.1442039.
  • Shen S, Meng Y. Adhesive and corrosive wear at microscales in different vapor environments. Friction. 2013;1(1):72–80.
  • Song Y, Nair RP, Zou M, et al. Adhesion and friction properties of micro/nano-engineered superhydrophobic/hydrophobic surfaces. Thin Solid Films. 2010;518(14):3801–3807.
  • Basset S, Heisbourg G, Pascale-Hamri A, et al. Effect of texturing environment on wetting of biomimetic superhydrophobic surfaces designed by femtosecond laser texturing. Nanomaterials. 2022;12(18): 3099.
  • Esmailzadeh S, Khorsand S, Raeissi K, et al. Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films. Surf Coat Technol. 2015;283:337–346. DOI: 10.1016/j.surfcoat.2015.11.005.
  • Deeksha P, Deepika G, Nishanthini J, et al. Super-hydrophobicity: mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. J Ind Eng Chem. 2020;92:1–17. DOI: 10.1016/j.jiec.2020.08.008.
  • Han DD, Chen ZD, Li JC, et al. Airflow enhanced solar evaporation based on Janus graphene membranes with stable interfacial floatability. ACS Appl Mater Interfaces. 2020;12(22):25435–25443. DOI: 10.1021/acsami.0c05401.
  • Zheng B, Kang J, Di Y, et al. Study of the wettability of laser-built 3Cr13 stainless steel. Surf Eng. 2021;37(12):1484–1495. DOI: 10.1080/02670844.2020.1840716.
  • Han DD, Cai Q, Chen ZD, et al. Bioinspired surfaces with switchable wettability. Front Chem. 2020;8:692. DOI: 10.3389/fchem.2020.00692.
  • Tian Y, Yan S, Song C, et al. Research on the influence of micro-morphology on the hydrophobicity of material surface. Colloid Interf Sci Commun. 2022;46:100556. DOI: 10.1016/j.colcom.2021.100556.
  • Liu W, Xu QJ, Han J. Superhydrophobic surface preparation technology and its progress. Appl Mech Mater. 2015;723:958–963.
  • Radhakrishnan J, Diaz M, Cordovilla F, et al. Water droplets impact dynamics on laser engineered superhydrophobic ceramic surface. Opt Laser Technol. 2023;158:108887. DOI: 10.1016/j.optlastec.2022.108887.
  • Radhakrishnan J, Diaz M, Cordovilla F, et al. Tunable superhydrophobic titanium nitride surface by ultrafast laser processing. Ceram Int. 2022;48(24):37264–37274. DOI: 10.1016/j.ceramint.2022.08.304.
  • Wang J, Wu Y, Zhang D, et al. Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method. Colloids Surf A. 2020;587:124331. DOI: 10.1016/j.colsurfa.2019.124331.
  • Giang HN, Nguyen TX, Huynh TV, et al. Fabrication of superhydrophobic surface using one-step chemical treatment. Surfac Interface. 2020;21:100673. DOI: 10.1016/j.surfin.2020.100673.
  • Park S, Huo J, Shin J, et al. Production of an EP/PDMS/SA/AlZnO coated superhydrophobic surface through an aerosol-assisted chemical vapor deposition process. Langmuir. 2022. DOI: 10.1021/acs.langmuir.2c01060.
  • Yang J, Wang R, Long F, et al. New perspectives on structural parameters and hydrophobic model inspired by a superhydrophobic Cu cone-flower coating. Mater Des. 2021;206:109827. DOI: 10.1016/j.matdes.2021.109827.
  • Lan L, Wang H, Zhu L, et al. Assembled 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane superhydrophobic surface coating. Phys Status Solidi (a). 2022;219(3):2100568. DOI: 10.1002/pssa.202100568.
  • Ellinas K, Tserepi A, Gogolides E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Langmuir. 2011;27(7):3960–3969. DOI: 10.1021/la104481p.
  • Song J, Huang S, Hu K, et al. Fabrication of superoleophobic surfaces on Al substrates. J Mater Chem A. 2013;1(46):14783–14789. DOI: 10.1039/c3ta13807k.
  • Xiang T, Ding S, Li C, et al. Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel. Mater Des. 2017;114:65–72. DOI: 10.1016/j.matdes.2016.10.047.
  • You R, Liu YQ, Hao YL, et al. Laser fabrication of graphene-based flexible electronics. Adv Mater. 2020;32(15):1901981. DOI: 10.1002/adma.201901981.
  • Wang T, Zhu H, Zhang Z, et al. Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method. Surfac Interfac. 2021;24:101112. DOI: 10.1016/j.surfin.2021.101112.
  • Huang J, Xu K, Xu S, et al. Self-aligned laser-induced periodic surface structures for large-area controllable nanopatterning. Laser Photonics Rev. 2022: 2200093. DOI: 10.1002/lpor.202200093.
  • Jung YC, Bhushan B. Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr Mater. 2007;57(12):1057–1060. DOI: 10.1016/j.scriptamat.2007.09.004.
  • Zhou Y C, Jiang Y P, Pan Y. Residual stress and stress-strain relationship of electrodeposited nickel coatings. Adv Mater Res. 2005;9: 21–30.www.scientific.net/AMR.9.21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.