177
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study of the electroplating process parameters on the electrical resistance of an aluminium alloy with a Cu-graphene-based coating

, , &
Pages 90-101 | Received 16 May 2022, Accepted 19 Mar 2023, Published online: 03 Apr 2023

References

  • Borkar S. Low power design challenges for the decade. Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC. Institute of Electrical and Electronics Engineers Inc., 2001: p. 293–296. doi:10.1109/ASPDAC.2001.913321.
  • Borkar S. Design challenges of technology scaling. IEEE Micro. 1999;19:23–29. doi:10.1109/40.782564.
  • Dunn P, Reay DA. Heat pipes, Opp. 1976.
  • Mochizuki M. Latest development and application of heat pipes for electronics and automotive. 2017 IEEE CPMT Symp. Japan, ICSJ 2017. Institute of Electrical and Electronics Engineers Inc., 2017: p. 87–90. doi:10.1109/ICSJ.2017.8240095
  • Olabi AG, Abdelkareem MA, Wilberforce T, et al. Application of graphene in energy storage device – a review. Renew Sustain Energy Rev. 2021;135:110026, doi:10.1016/J.RSER.2020.110026.
  • Sun Z, Fang S, Hu YH. 3D graphene materials: from understanding to design and synthesis control. Chem Rev. 2020;120:10336–10453. doi:10.1021/ACS.CHEMREV.0C00083/ASSET/IMAGES/MEDIUM/CR0C00083_0037.GIF.
  • Lu M, Zhang X, Ji J, et al. Research progress on power battery cooling technology for electric vehicles. J Energy Storage. 2020;27:101155, doi:10.1016/J.EST.2019.101155.
  • Moore AL, Shi L. Emerging challenges and materials for thermal management of electronics. Mater Today. 2014;17:163–174. doi:10.1016/j.mattod.2014.04.003.
  • Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2011;15:24–46. doi:10.1016/j.rser.2010.08.007.
  • Tarcan R, Todor-Boer O, Petrovai I, et al. Reduced graphene oxide today. J Mater Chem C. 2020;8:1198–1224. doi:10.1039/C9TC04916A.
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–162. doi:10.1103/RevModPhys.81.109.
  • Leone C, Di Siena M, Genna S, et al. Effect of graphite nanoplatelets percentage on the in plane thermal diffusivity of ultra-thin graphene based (nanostructured) composite. Opt Laser Technol. 2022;146:107552, doi:10.1016/J.OPTLASTEC.2021.107552.
  • Tiwari SK, Sahoo S, Wang N, et al. Graphene research and their outputs: status and prospect. J Sci Adv Mater Devices. 2020;5:10–29. doi:10.1016/J.JSAMD.2020.01.006.
  • Sun PZ, Yang Q, Kuang WJ, et al. Limits on gas impermeability of graphene. Nature. 2020;5797798(579):229–232. doi:10.1038/s41586-020-2070-x.
  • Yang G, Li L, Lee WB, et al. Structure of graphene and its disorders: a review. Available from: http://Www.Tandfonline.Com/Action/JournalInformation?Show = aimsScope&journalCode = tsta20#.VmBmuzZFCUk. 19 (2018) 613–648. doi:10.1080/14686996.2018.1494493.
  • Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–1281. doi:10.1557/mrs.2012.203.
  • You R, Liu YQ, Hao YL, et al. Laser fabrication of graphene-based flexible electronics. Adv Mater. 2020;32:1901981, doi:10.1002/ADMA.201901981.
  • Cárdenas Contreras EM, Oliveira GA, Bandarra Filho EP. Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. Int J Heat Mass Transf. 2019;132:375–387. doi:10.1016/J.IJHEATMASSTRANSFER.2018.12.014.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field in atomically thin carbon films. Science. 2004;80(306):666–669. doi:10.1126/science.1102896.
  • Novoselov KS. Nobel lecture: graphene: materials in the flatland. Rev Mod Phys. 2011;83:837–849. doi:10.1103/RevModPhys.83.837.
  • Cooper DR, D'Anjou B, Ghattamaneni N, et al. Experimental review of graphene. ISRN Condens Matter Phys. 2012;2012:1–56. doi:10.5402/2012/501686.
  • Tan YW, Zhang Y, Bolotin K, et al. Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett. 2007;99; doi:10.1103/PhysRevLett.99.246803.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907. doi:10.1021/nl0731872.
  • Balandin AA, Ghosh S, Nika DL, et al. Thermal conduction in suspended graphene layers, in: fullerenes nanotub. Carbon Nanostructures. 2010: 474–486. doi:10.1080/1536383X.2010.487785.
  • Yin Z, Zhu J, He Q, et al. Graphene-Based materials for solar cell applications. Adv Energy Mater. 2014;4:1300574), doi:10.1002/aenm.201300574.
  • Stoller MD, Park S, Yanwu Z, et al. Graphene-Based ultracapacitors. Nano Lett. 2008;8:3498–3502. doi:10.1021/nl802558y.
  • Zhang H, Yang D, Lau A, et al. Hybridized graphene for supercapacitors: beyond the limitation of pure graphene. Small. 2021;17:2007311, doi:10.1002/SMLL.202007311.
  • Justino CIL, Gomes AR, Freitas AC, et al. Graphene based sensors and biosensors. TrAC - Trends Anal Chem. 2017;91:53–66. doi:10.1016/j.trac.2017.04.003.
  • Huang H, Su S, Wu N, et al. Graphene-based sensors for human health monitoring. Front Chem. 2019;7; doi:10.3389/fchem.2019.00399.
  • Asadi E, Fassadi Chimeh A, Hossein A, et al. A review of clinical applications of graphene quantum dot-based composites. J Compos Compd. 2019;1:31–40. doi:10.29252/JCC.1.1.6.
  • Stanford MG, Li JT, Chen Y, et al. Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano. 2019;13:11912–11920. doi:10.1021/ACSNANO.9B05983/ASSET/IMAGES/LARGE/NN9B05983_0005.JPEG.
  • Wang J, Jin X, Li C, et al. Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem Eng J. 2019;370:831–854. doi:10.1016/J.CEJ.2019.03.229.
  • Balandin D, Alexander A. Kotchetkov, Graphene heat spreaders for thermal management of nanoelectronic circuits. n.d. Available from: https://www.researchgate.net/publication/45877528_Graphene_Heat_Spreaders_for_Thermal_Management_of_Nanoelectronic_Circuits (accessed January 15, 2020).
  • Wang B, Ruan T, Chen Y, et al. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020;24:22–51. doi:10.1016/J.ENSM.2019.08.004.
  • Parvez K, Wu ZS, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc. 2014;136:6083–6091. doi:10.1021/ja5017156.
  • Huang X, Zhi C, Lin Y, et al. Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R Reports. 2020;142:100577, doi:10.1016/J.MSER.2020.100577.
  • Sun X, Huang C, Wang L, et al. Recent progress in graphene/polymer nanocomposites. Adv Mater. 2021;33:2001105, doi:10.1002/ADMA.202001105.
  • Seol JH, Moore AL, Shi L, et al. Thermal conductivity measurement of graphene exfoliated on silicon dioxide. J Heat Transfer. 2011;133; doi:10.1115/1.4002608.
  • Prasher R. Graphene spreads the heat. Science (80-.). 2010;328:185–186. doi:10.1126/science.1188998.
  • Yang Y, Liu W, Asheghi M. Thermal and electrical characterization of Cu/CoFe superlattices. Appl Phys Lett. 2004;84:3121–3123. doi:10.1063/1.1713033.
  • Ghofraniha N, Conti C. Graphene oxide photonics. J Opt. 2019;21:053001, doi:10.1088/2040-8986/AB10D7.
  • Almonti D, Simoncini M, Tagliaferri V, et al. Electrodeposition of graphene nanoplatelets on CPU cooler—experimental and numerical investigation. Mater Manuf Process. 2018;33:220–226. doi:10.1080/10426914.2017.1303165.
  • Almonti D, Ucciardello N. Improvement of thermal properties of micro head engine electroplated by graphene: experimental and thermal simulation. Mater Manuf Process. 2019;34:1612–1619. doi:10.1080/10426914.2019.1594263.
  • Ibañez A, Fatás E. Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters. Surf Coatings Technol. 2005;191:7–16. doi:10.1016/j.surfcoat.2004.05.001.
  • Tao S, Li DY. Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology. 2006;17:65–78. doi:10.1088/0957-4484/17/1/012.
  • Kumar S, Pande S, Verma P. International Journal of Current Engineering and Technology Factor Effecting Electrodeposition Process. 2015. Available from: http://inpressco.com/category/ijcet (accessed January 24, 2020).
  • Antenucci A, Guarino S, Tagliaferri V, et al. Electrodeposition of graphene on aluminium open cell metal foams. Mater Des. 2015;71:78–84. doi:10.1016/j.matdes.2015.01.004.
  • Mandolfino C, Lertora E, Genna S, et al. Effect of laser and plasma surface cleaning on mechanical properties of adhesive bonded joints. Procedia CIRP. 2015;33:458–463. doi:10.1016/J.PROCIR.2015.06.054.
  • Antenucci A, Guarino S, Tagliaferri V, et al. Improvement of the mechanical and thermal characteristics of open cell aluminum foams by the electrodeposition of Cu. Mater Des. 2014;59:124–129. doi:10.1016/j.matdes.2014.03.004.
  • Montgomery DC, Wiley J. Design and analysis of experiments eighth edition. 2013. Available from: www.wiley.com/go/permissions. (accessed September 30, 2021).
  • (PDF) The influence of particles of carbon nanoderivative on the properties of the electrocodeposited copper nanocomposite coating. n.d. Available from: https://www.researchgate.net/publication/289426488_The_influence_of_particles_of_carbon_nanoderivative_on_the_properties_of_the_electrocodeposited_copper_nanocomposite_coating (accessed September 30, 2021).
  • Alshwawreh N, Militzer M, Bizzotto D, et al. Resistivity-microstructure correlation of self-annealed electrodeposited copper thin films. Microelectron Eng. 2012;95:26–33. doi:10.1016/J.MEE.2012.02.035.
  • Lee H, Nix WD, Wong SS. Studies of the driving force for room-temperature microstructure evolution in electroplated copper films. J Vac Sci Technol B Microelectron Nanom Struct. 2004;22:2369, doi:10.1116/1.1788680.
  • Castrejón-Sánchez VH, Solis AC, López R, et al. Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO). Mater Res Express. 2019;6:075909, doi:10.1088/2053-1591/AB1662.
  • Mokhtari O, Roshanghias A, Ashayer R, et al. Disabling of nanoparticle effects at increased temperature in nanocomposite solders. J Electron Mater. 2012;41:1907–1914. doi:10.1007/S11664-012-1976-Y.
  • Genna S, Tagliaferri F, Papa I, et al. Multi-response optimization of CFRP laser milling process based on response surface methodology. Polym Eng Sci. 2017;57:595–605. doi:10.1002/pen.24560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.