600
Views
27
CrossRef citations to date
0
Altmetric
Invited Article

Nanoparticles in the supramolecular order of discotic liquid crystals

Pages 353-367 | Received 17 Jun 2013, Accepted 08 Jul 2013, Published online: 12 Aug 2013

References

  • Reinitzer F. Beiträge zur Kenntniss des Cholesterins. Monatsch Chem. 1888;9:421–441. (English Translation), 1989, Contributions to the knowledge of cholesterol, Liq Cryst. 5:7–18.
  • Chandrasekhar S, Sadashiva BK, Suresh KA. Liquid crystals of disc-like molecules. Pramana. 1977;7:471–480.
  • Kumar S. Chemistry of discotic liquid crystals: from monomers to polymers. Boca Raton, FL: CRC Press; 2011.
  • Kumar S. Self-organization of disc-like molecules: chemical aspects. Chem Soc Rev. 2006;35:83–109.
  • Kawata K. Orientation control and fixation of discotic liquid crystal. Chem Rec. 2002;2:59–80.
  • Bisoyi HK, Kumar S. Discotic nematic liquid crystals: science and technology. Chem Soc Rev. 2010;39:264–285.
  • Kumar S. Functional discotic liquid crystals. Israel J Chem. 2012;52:820–829.
  • Bisoyi HK, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev. 2011;40:306–319.
  • Bisoyi HK, Kumar S. Carbon-based liquid crystals: art and science. Liq Cryst. 2011;38:1427–1449.
  • Bushby RJ, Kawata K. Liquid crystals that affected the world: discotic liquid crystals. Liq Cryst. 2011;38:1415–1426.
  • Kaafarani BR. Discotic liquid crystals for opto-electronic applications. Chem Mater. 2011;23:378–396.
  • Pisula W, Feng X, Mullen K. Charge-carrier transporting graphene-type molecules. Chem Mater. 2011;23:554–567.
  • Kumar S. Playing with discs. Liq Cryst. 2009;36:607–638.
  • Goodby JW, Saez IM, Cowling SJ, Gortz V, Draper M, Hall AW, Sia S, Cosquer G, Lee SE, Raynes EP. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew Chem Int Ed. 2008;47:2754–2787.
  • Tschierske C. Liquid crystal engineering – new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem Soc Rev. 2007;36:1930.
  • Sergeyev S, Pisula W, Geerts YH. Discotic liquid crystals: a new generation of organic semiconductors. Chem Soc Rev. 2007;36:1902–1929.
  • Wu J, Pisula W, Mullen K. Graphenes as potential material for electronics. Chem Rev. 2007;107:718–747.
  • Laschat S, Baro A, Steinke N, Giesselmann F, Hagele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887.
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2006;45:38–68.
  • Donnio B, Guillon D, Deschenaux R, Bruce DW. Metallomesogens. In: McCleverty, JA, Meyer, TJ, editors. Comprehensive coordination chemistry II. Oxford: Elsevier; 2003. p. 357–627.
  • Ohta K, Hatsusaka K, Sugibayashi M, Ariyoshi M, Ban K, Maeda F, Naito R, Nishizawa K, van de Craats AM, Warman JM. Discotic liquid crystalline semiconductors. Mol Cryst Liq Cryst. 2003;397:25–45.
  • Chiang LY, Stokes JP, Safinya CR, Bloch AN. Charge transfer salts of highly oriented fibers of discotic liquid crystal HET-n. Mol Cryst Liq Cryst. 1985;125:279–288.
  • Teitelbaum RC, Ruby SL, Marks TJ. Charge transfer and partial oxidation in the conductive hydrocarbon-iodine complex ‘2perylene.cntdot.3I2’. J Am Chem Soc. 1979;101:7568–7573.
  • Petersen JL, Schramm CS, Stojakovic DR, Hoffman BM, Marks TJ. A new class of highly conductive molecular solids: the partially oxidized phthalocyanines. J Am Chem Soc. 1977;99:286–288.
  • van Keulen J, Warmerdam TW, Nolte RJM, Drenth W. Electrical conductivity in hexaalkoxytriphenylenes. Recl Trav Chim Pays-Bas. 1987;106:534–536.
  • Vaughan GBM, Heiney PA, McCauley JP Jr, Smith AB III. Conductivity and structure of a liquid-crystalline organic conductor. Phys Rev B. 1992;46:2787–2791.
  • Boden N, Bushby RJ, Clements J. Mechanism of quasi one dimensional electronic conductivity in discotic liquid crystals. J Chem Phys. 1993;98:5920–5931.
  • Boden N, Bushby RJ, Clements J. Electron transport along molecular stacks in discotic liquid crystals. J Mater Sci. Mater Electron. 1994;5:83–88.
  • Arikainen EO, Boden N, Bushby RJ, Clements J, Movaghar B, Wood A. Effects of side-chain length on the charge transport properties of discotic liquid crystals and their implications for the transport mechanism. J Mater Chem. 1995;5:2161–2165.
  • Balagurusamy VSK, Prasad SK, Chandrasekhar S, Kumar S, Manickam M, Yelamaggad CV. Quasi-one dimensional electrical conductivity and thermoelectric power studies on a discotic liquid crystal. Pramana. 1999;53:3–11.
  • Chandrasekhar S, Balagurusamy VSK. Discotic liquid crystals as quasi-one-dimensional electrical conductors. Proc R Soc Lond A. 2002;458:1783–1794.
  • Kumar PS, Kumar S, Lakshminarayanan V. Electrical conductivity studies on discotic liquid crystal-ferrocenium donor-acceptor systems. J Phys Chem B. 2008;112:4865–4869.
  • Kumar S, Lakshminarayanan V. Inclusion of gold nanoparticles into a discotic liquid crystalline matrix. Chem Commun. 2004:1600–1601.
  • Kumar S, Pal SK, Lakshminarayanan V. Discotic-decorated gold nanoparticles. Mol Cryst Liq Cryst. 2005;434:251–258.
  • Kumar PS, Pal SK, Kumar S, Lakshminarayanan V. Dispersion of thiol stabilized gold nanoparticles in lyotropic liquid crystalline systems. Langmuir. 2007;23:3445–3449.
  • Kumar S, Pal SK, Kumar PS, Lakshminarayanan V. Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter. 2007;3:896–900.
  • Vijayaraghavan D, Kumar S. Self-assembled superlattices of gold nanoparticles in a discotic liquid crystal. Mol Cryst Liq Cryst. 2009;508:101–114.
  • Kumar S, Bisoyi HK. Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew Chem Int Ed. 2007;46:1501–1503.
  • Bisoyi HK, Kumar S. Carbon nanotubes in triphenylene and rufigallol-based room temperature monomeric and polymeric discotic liquid crystals. J Mater Chem. 2008;18:3032–3039.
  • Avinash BS, Lakshminarayanan V, Kumar S, Vij JK. Gold nanorods embedded discotic nanoribbons. Chem Commun. 2013;49:978–980.
  • Kumar S, Sagar LK. CdSe quantum dots in a columnar matrix. Chem Commun. 2011;47:12182–12184.
  • Kumar S. unpublished work.
  • Paul W, Sharma PC. Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. Int J Ayurveda Res. 2011;2:14–22.
  • Sarkar PK, Chaudhary AK. Ayurvedic Bhasma: the most ancient application of nanomedicine. J Sci Indus Res. 2010;69:901–905.
  • Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond. 1857;147:145–181.
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
  • Frens G. Particle size and sol stability in metal colloids. Colloid Polym Sci. 1972;250:736–741.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–22.
  • Duff DG, Baiker A, Edwards PP. A new hydrosol of gold clusters. J Chem Soc Chem. Commun. 1993:96–98.
  • Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir. 1993;9:3408–3413.
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem Commun. 1994;7:801–802.
  • Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C. Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun. 1995:1655–1656.
  • Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir. 1998;14:17–30.
  • Jin R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale. 2010;2:343–362.
  • Li Y, Zaluzhna O, Xu B, Gao Y, Modest JM, Tong YYJ. Mechanistic insights into the brust−schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. J Am Chem Soc. 2011;128:6550–6551.
  • Jana NR, Peng X. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J Am Chem Soc. 2003;125:14280–14281.
  • Zheng N, Fan J, Stucky GD. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc. 2006;128:6550–6551.
  • Jana NR, Gearheart LA, Murphy CJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir. 2001;17:6782–6786.
  • Perrault SD, Chan WCW. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc. 2009;131:17042–17043.
  • Kim F, Connor S, Song H, Kuykendall T, Yang P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004;43:3673–3677.
  • Riess G. Micellization of block copolymers. Prog. Poly. Sci. 2003;28:1107–1170.
  • Kanayama N, Tsutsumi O, Kanazawa A, Ikeda T. Distinct thermodynamic behaviour of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem. Commun. 2001:2640–2641.
  • In I, Jun YW, Kim YJ, Kim SY. Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. 2005:800–801.
  • Draper M, Saez IM, Cowling SJ, Gai P, Heinrich B, Donnio B, Guillon D, Goodby JW. Self-assembly and shape morphology of liquid crystalline gold metamaterials. Adv. Funct. Mater. 2011;21:1260–1278.
  • Wojcik M, Lewandowski W, Matraszek J, Mieczkowski J, Borysiuk J, Pociecha D, Gorecka E. Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. 2009;48:5167–5169.
  • Wojcik M, Kolpaczynska M, Pociecha D, Mieczkowski J, Gorecka E. Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Matter. 2010;6:5397–5400.
  • Zeng X, Liu F, Fowler AG, Ungar G, Cseh L, Mehl GH, Macdonald JE. Ordered gold nanoarrays: 3D ordered gold strings by coating nanoparticles with mesogens. Adv. Mater. 2009;21:1746–1750.
  • Cseh L, Mehl GH. The design and investigation of room temperature thermotropic nematic gold nanoparticles. J Am Chem Soc. 2006;128:13376–13377.
  • Cseh L, Mehl GH. Structure–property relationships in nematic gold nanoparticles. J Mater Chem. 2007;17:311–315.
  • Marx VM, Girgis H, Heiney PA, Hegmann T. Bent-core liquid crystal (LC) decorated gold nanoclusters: synthesis, self-assembly, and effects in mixtures with bent-core LC hosts. J Mater Chem. 2008;18:2983–2994.
  • Qi H, Hegmann T. Liquid crystal–gold nanoparticle composites. Liq Cryst Today. 2011;20:102–114.
  • Song Y, Huang T, Murray RW. Heterophase ligand exchange and metal transfer between monolayer protected clusters. J Am Chem Soc. 2003;125:11694–11701.
  • Marguet S, Markovitsi D, Millie P, Sigal H, Kumar S. Influence of disorder on electronic excited states: an experimental and numerical study of alkylthiotriphenylene columnar phases. J Phys Chem B. 1998;102:4697–4710.
  • Kumar S, Manickam M. Oxidative trimerization of o-dialkoxybenzenes to hexaalkoxytriphenylenes: molybdenum(v) chloride as a novel reagent. J Chem Soc Chem Commun. 1997:1615–1616.
  • Kohne B, Praefcke K. Hexaalkynylbenzene derivatives, first hydrocarbons as new columnar or nematic discotic liquid crystals. Chimia. 1987;41:196–198.
  • Shen Z, Yamada M, Miyake M. Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands. J Am Chem Soc. 2007;129:14271–14280.
  • Holt LA, Bushby RJ, Evans SD, Burgess A, Seeley G. A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles. J Appl Phys. 2008;103:63712–63717.
  • Liu L, Miao Q, Liang G. Quantum dots as multifunctional materials for tumor imaging and therapy. Materials. 2013;6:483–499.
  • Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon. 2013;7:13–23.
  • Kamat PV. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc Chem Res. 2012;45:1906–1915.
  • Semonin OE, Luther JM, Beard MC. Quantum dots for next-generation photovoltaics. Mater Today. 2012;15:508–515.
  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. ChemRev. 2004;104:3893–3946.
  • Rao CNR, Vivekchand SRC, Biswas K, Govindaraj A. Synthesis of inorganic nanomaterials. Dalton Trans. 2007:3728–3749.
  • Debasis B, Lei Q, Teng-Kuan T, Paul H. Quantum dots and their multimodal applications: a review. Materials. 2010;3:2260–2345.
  • Karanikolos GN, Alexandridis P, Mountziaris TJ. Block copolymer-templated synthesis and organization of semiconductor nanocrystals. Macromol Symp. 2010;289:43–51.
  • Mirzaei J, Reznikov M, Hegmann T. Quantum dots as liquid crystal dopants. J Mater Chem. 2012;22:22350–22365.
  • Zlateva G, Zhelev Z, Bakalova R, Kanno I. Precise size control and synchronized synthesis of six colors of CdSe quantum dots in a slow-increasing temperature gradient. Inorg Chem. 2007;46:6212–6214.
  • Lili H, Donghuan Q, Xi J, Yanshan L, Li W, Junwu C, Yong C. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology. 2006;17:4736–4742.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539.
  • Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale. 2013;5:1727–1752.
  • Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2013:2013;676815.
  • Peretz S, Regev O. Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interface Sci. 2012;17:360–368.
  • Kamalha E, Shi X, Mwasiagi JI, Zeng Y. Nanotechnology and carbon nanotubes; A review of potential in drug delivery. Macromol Res. 2012;20:891–898.
  • Scarselli M, Castrucci P, De Crescenzi M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J Phys Condens Matter. 2012;24:313202.
  • Dai L, Chang DW, Baek J, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small. 2012;8:1130–1166.
  • Endo M. Carbon nanotube research: past and future. Jpn J Appl Phys. 2012;51:040001.
  • Scalia G. Alignment of carbon nanotubes in thermotropic and lyotropic liquid crystals. Chem Phys Chem. 2010;11:333–340.
  • Kimura M, Miki N, Adachi N, Tatewaki Y, Ohta K, Shirai H. Organization of single-walled carbon nanotubes wrapped with liquid-crystalline π-conjugated oligomers. J Mater Chem. 2009;19:1086–1092.
  • Trushkevych O, Collings N, Hasan T, Scardaci V, Ferrari AC, Wilkinson TD, Crossland WA, Milne WI, Geng J, Johnson BFG, Macaulay S. Characterization of carbon nanotube–thermotropic nematic liquid crystal composites. J Phys D Appl Phys. 2008;41:125106.
  • Jeon SY, Park KA, Baik IS, Jeong SJ, Jeong SH, An KH, Lee SH, Lee YH. Dynamic response of carbon nanotubes dispersed in nematic liquid crystal. Nano. 2007;2:41.
  • van der Schoot P, Popa-Nita V, Kralj S. Alignment of carbon nanotubes in nematic liquid crystals. J Phys Chem B. 2008;112:4512–4518.
  • Sureshkumar P, Srivastava AK, Jeong SJ, Kim M, Jo EM, Lee SH, Lee YH. Anomalous electrokinetic dispersion of carbon nanotube clusters in liquid crystal under electric field. J Nanosci Nanotechnol. 2009;9:4741–4746.
  • Dhar R, Pandey AS, Pandey MB, Kumar S, Dabrowski R. Optimization of the display parameters of a room temperature twisted nematic display material by doping single-wall carbon nanotubes. Appl Phys Express. 2008;1:121501.
  • Manjuladevi V, Gupta RK, Kumar S. Effect of functionalized carbon nanotube on electro-optic and dielectric properties of a liquid crystal. J Mol Liq. 2012;171:60–63.
  • Lagerwall JPF, Scalia G. Carbon nanotubes in liquid crystals. J Mater Chem. 2008;18:2890–2898.
  • Lee JJ, Yamaguchi A, Alam MA, Yamamoto Y, Fukushima T, Kato K, Takata M, Fujita N, Aida T. Discotic ionic liquid crystals of triphenylene as dispersants for orienting single-walled carbon nanotubes. Angew Chem Int Ed. 2012;51:8490–8494.
  • Murphy CJ, Thompson LB, Chernak DJ, Yang JA, Sivapalan ST, Boulos SP, Huang J, Alkilany AM, Sisco PN. Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interface Sci. 2011;16:128–134.
  • Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–4910.
  • Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13:1389–1393.
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–1962.
  • Xiao S, Tang J, Beetz T, Guo X, Tremblay N, Siegrist T, Zhu Y, Steigerwald M, Nuckolls C. Transferring self-assembled, nanoscale cables into electrical devices. J Am Chem Soc. 2006;128:10700–10701.
  • Wang H, Xu X, Kojtari A, Ji H. Triphenylene nano/microwires for sensing nitroaromatics. J Phys Chem C. 2011;115:20091–20096.
  • Che Y, Yang X, Liu G, Yu C, Ji H, Zuo J, Zhao J, Zang L. Ultrathin n-type organic nanoribbons with high photoconductivity and application in optoelectronic vapor sensing of explosives. J Am Chem Soc. 2010;132:5743–5750.
  • Wang H, Xu X, Li L, Yang C, Ji H. Optoelectronic property and sensing applications of crystalline nano/microwires of decacyclene. Micro Nano Lett. 2011;6:763–766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.