836
Views
30
CrossRef citations to date
0
Altmetric
Invited Article

Structure and dynamics of biological liquid crystals

, &
Pages 430-451 | Received 06 Jun 2013, Accepted 13 Sep 2013, Published online: 14 Oct 2013

References

  • Fratzl P. Biomimetic materials research: what can we really learn from nature’s structure materials? J R Soc Interface. 2007;4:637–642.
  • Donald AM, Windle AH, Hanna S. Liquid crystalline polymers. Cambridge (UK): Cambridge University Press; 2006.
  • de Gennes PG, Prost J. The physics of liquid crystals. New York (NY): Oxford University Press; 1995.
  • Neville AC. Biology of fibrous composites: development beyond the cell membrane. Cambridge (UK): Cambridge University Press; 1993.
  • Bouligand Y. Twisted fibrous arrangements in biological materials and cholesteric mesopahses. Tissue Cell. 1972;4:189–217.
  • Giraud-Guille M-M. Plywood structures in nature. Curr Opin Solid State Mater Sci. 1998;3:221–227.
  • Livolant F, Bouligand Y. Liquid crystalline phases given by helical biological polymers (DNA, PBLG and xanthan). J Phys-Paris. 1986;47:1813–1827.
  • Livolant F. Ordered phases of DNA in vivo and in vitro. Physica A: Stat Mech Appl. 1991;176:117–137.
  • Lydon, Microtubes: nature’s smartest mesogens – a liquid crystals model for cell division. J. Liq Cryst Today. 2006;15:1–10.
  • Petrov AG. Flexoelectricity of model living membranes. Biochim Biophys Acta (BBA)-Biomembr. 2002;1561:1–25.
  • Livolant F, Bouligand Y. New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma. 1978; 68:21–44.
  • Knight DP, Feng D. Some observations on the collagen fibrils of the egg capsule of the dogfish, Scyliorhinus canicula. Tissue Cell. 1994;26:385–401.
  • Neville A, Luke B. A biological system producing a self-assembling cholesteric protein liquid crystals. J Cell Sci. 1971;8:93–109.
  • Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature. 2001;410:541–548.
  • Adams M, Dogic Z, Keller SL, Fraden S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature. 1998;393:349–352.
  • Kupchinov B, Ermakov S, Rodnenkov V, Bobrysheva S, Beloenko E, Kestelman V. Role of liquid crystals in the lubrication of living joints. Smart Mater Struct. 1993;2:7–12.
  • Rey AD. Liquid crystal models of biological materials and processes. Soft Matter. 2010;6:3402–3429.
  • Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14:170–172.
  • Dong XM, Revol J-F, Gray DG. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose. 1998; 5:19–32.
  • Wright DC, Mermin ND. Crystalline liquids: the blue phases. Rev Mod Phys. 1989;61: 385–432.
  • Doi M. The theory of polymer dynamics. New York (NY): Oxford University Press; 1988.
  • Davies JM, Viney C. Mucin-water phases: conditions for mucus liquid crystallinity. Thermochim Acta. 1998;315: 39–49.
  • Rey AD. Capillary models for liquid crystal fibers, membranes, films, and drops. Soft Matter. 2007;3:1349–1368.
  • Rey AD. Thermodynamic of soft anisotropic interfaces. J Chem Phys. 2004;120:2010–2019.
  • Rey AD. Liquid crystals models of membrane flexoelectricity. Phys Rev E. 2006;74:011710.
  • Meyer RB, Lonberg F, Taratuta V, Fraden S, Lee S-D, Hurd AJ. Measurements of the anisotropic viscous and elastic properties of lyotropic polymer nematics. Faraday Discuss. Chem. Soc. 1985;79:125–132.
  • Murugesan YK, Rey AD. Modelling textural processes during self-assembly of plant-based chiral-nematic liquid crystals. Polymers. 2010;2:766–785.
  • Rey AD. Flow and texture modeling of liquid crystalline materials. Rheol. Rev. 2009;6:71–135.
  • Rey A. Nonlinear actuator model for flexoelectric membranes. Int. J. Des Nat Ecodynam. 2008;3:28–38.
  • Belamie E, Mosser G, Gobeaux F, Giraud-Guille M. Liquid crystals and biological morphogenesis: ancient and new questions. J Phys Condens Matter. 2006;18:S115.
  • Bouligand Y. CR Chim. 2008;11:281–296.
  • Roland J, Reis D, Vian B, Satiat-Jeunemaitre B, Mosiniak M. Morphogenesis of plant cell walls at the supermolecular level: internal geometry and versatility of helicoidal expression. Protoplasma. 1987;140:75–91.
  • Reis D, Roland J, Mosiniak M, Darzens D, Vian B. The sustained and warped helicoidal pattern of a xylan-cellulose composite: the stony endorcap model. Protoplasma. 1992;166:21–34.
  • Murugesan YK, Rey AD. Structure and rheology of fiber-landen membranes via integration of nematodynamics and membranodynamics. J Non-Newton Fluid. 2010;165:32–44.
  • Gupta G, Rey AD. Texture rules for concentrated filled nematics. Phys Rev Lett. 2005;95:127802.
  • De Luca G, Rey A. Monodomain and polydomain hellicoids in chiral liquid-crystalline phases and their biological analogues. Eur Phys J E. 2003;12:291–302.
  • De Luca G, Rey AD. Chiral front propagation in liquid-crystalline materials: formation of the planar monodomain twisted plywood architecture of biological fibrous composites. Phys Rev E. 2004;69:011706.
  • Wang XJ, Zhou Q-F, Zhou Q. Liquid crystalline polymers. Hackensack (NJ): World Scientific Publishing Company; 2004.
  • Bosch AT, Maissa P, Sixou P. Effect of the flexibility on the phase transition of polymeric liquid crystals. Phys Lett A. 1983;94: 298–300.
  • Mishra S, Mishra B, Samant S, Narayanan J, Manohar C. Nematic-isotropic transition in Mixed surfactant solutions. Langmuir. 1993;9:2804–2807.
  • Sharma V, Crne M, Park JO, Srinivasarao M. Structural origin of circularly polarized iridescence in jeweled beetles. Science. 2009;325:449–451.
  • Willcox PJ, Gido SP, Muller W, Kaplan DL. Evidence of a cholesteric liquid crystalline phase in nature silk spinning processes. Macromolecules. 1996;29:5106–5110.
  • Kirkwood JE, Fuller GG. Liquid crystalline collagen: s self-assembled morphology for the orientation of mammalian cells. Langmuir. 2009;25:3200–3206.
  • Miller AF, Donald AM. Imaging of anisotropic cellulose suspensions using environmental scanning microscopy. Biomacromolecules. 2003;4:510–517.
  • Dervichian D. The control of lyotropic liquid-crystals, biological and medical implications. Mol Cryst Liq Cryst. 1977;40:19–31.
  • Li J, Revol J, Marchessault R. Rheological properties of aqueous suspension of chitin crystallites. J Colloid Interface Sci. 1996;183:365–373.
  • Dogic Z, Fraden S. Ordered phases of filamentous. Curr Opin Colloid In terface Sci. 2006;11:47–55.
  • Golmohammadi M, Rey AD. Thermodynamic modelling of carbonaceous mesophase mixtures. Liq Cryst. 2009;36: 75–92.
  • Golmohammadi M, Rey AD. Entropic behaviour of binary carbonaceous mesophases. Entropy. 2008;10:183–199.
  • Barry E, Hensel Z, Dogic Z, Shribak M, Oldenbourg R. Entropy-driven formation of a chiral liquid crystalline phase of helical filaments. Phys Rev Lett. 2006;96:018305.
  • Hanker JS, Giammara BL. Biomaterials and biomedical devices. Science. 1988;242:885–892.
  • Yannas I, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14:65–81.
  • Ford CN, Martin DW, Warner TF. Injectable collagen in laryngeal rehabilitation. Laryngoscope. 1984;94:513–518.
  • Rey AD, Pasini D, Murugesan YK. Multiscale modelling of plant cell wall architecture and tissue mechanics for biommimetic applications. In Bar-Cohen Y. editor. Natural and biomimetic materials. Boca Raton (FL): CRC Press; 2011, p. 131–168. ISBN 9781439834763.
  • Grecov D, Rey AD. Computational rheology of carbonaceous mesophases. Carbon. 2004;42:1257–1261.
  • Grecov D, Rey AD. Theoretical and computational rheology for discotic nematic liquid crystals. Mol Cryst Liq Cryst. 2002;391:57–94.
  • Chandrasekhar S. Liquid crystals. 2nd ed. Cambridge: Cambridge University Press; 1992.
  • Larson RG. The structure and rheology of complex fluids. New York (NY): Oxford University Press; 1999.
  • Grecov D, de Lima L, Rey A. Multiscale theory and simulation for carbon fibre precursors based on carbonaceous mesophases. Plast, Rubber Compos. 2006;35:6–7.
  • de Andrade Lima L, Rey A. Back-flow and flow-alignment in pulsatile flows of Leslie-Ericksen liquid crystals. Liq Cryst. 2006; 33:711–722.
  • de Andrade Lima L, Rey A. Linear viscoleasticity of textured carbonaceous mesophases. J Brazil Chem Soc. 2006;17:1109–1116.
  • de Andrade Lima L, Rey A. Pulsatile flows of Leslie-Ericksen liquid crystals. J Non-Newton Fluid. 2006;135:32–45.
  • de Andrade Lima L, Rey A. Superposition principles for small amplitude oscillatory shearing of nematic mesopahses. Rheol Acta. 2006;45:591–600.
  • de Andrade Lima L, Rey A. Pulsatile flow of discotic mesophases. Chem Eng Sci. 2005;60:6622–6636.
  • de Andrade Lima L, Rey A. Superposition and universality in the linear viscoelasticity of Leslie-Ericksen liquid crystals. J Rheol. 2004;48:1067.
  • de Andrade Lima L, Rey A. Assesing flow alignment of nematic liquid crystals through linear viscoelasticity. Phys Rev E. 2004;70:011701.
  • de Andrade Lima L, Rey A. Linear viscoelasticty of discotic mesophases. Chem Eng Sci. 2004;59:3891–3905.
  • de Andrade Lima L, Rey A. Poiseuille flow of discotic nematic liquid crystals’ onion textures. J Non-Newton Fluid. 2004;119:71–81.
  • de Andrade Lima L, Rey A. Integrated linear and nonlinear viscoelasticity of discotic liquid crystals. Chem Eng Commun. 2006;193:1090–1109.
  • de Andrade Lima L, Rey A. Poiseuille flow of Leslie-Ericksen discotic liquid crystals. Solution multiplicity, multistability, and non-Newtonian rheology. J Non-Newton Fluid. 2003;110:103–142.
  • de Andrade Lima LRP, Rey AD. Computational modeling of ring textures in mesophase carbon fibers. Mater Res. 2003;6:285–293.
  • de Andrade Lima L, Rey A. Linear and nonlinear viscoelasticity of discotic nematics under transient Poiseuille flows. J Rheol. 2003;47:1261.
  • Rey AD, Denn MM. Dynamical phenomena in liquid-crystalline materials. Annu Rev Fluid Mech. 2002;34:233–266.
  • Grecov D, Rey AD. Steady state and transient rheological behavior of mesophase pitch, Part II: Theory. J Rheol. 2005;49:175–195.
  • Pieranski P, Oswald P. Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments. Boca Raton (FL): Taylor & Francis; 2005.
  • Rey AD, Tsuji T. Recent advances in theoretical liquid crystal rheology. Macromol Theor Simul. 1998;7:623–639.
  • Tsuji T, Rey AD. Orientational mode selection mechanism for sheared nematic liquid crystalline materials. Phys Rev E. 1998;57:5609.
  • Tsuji T, Rey AD. Effect of long range order on sheared liquid crystalline materials. Part 1: Compatibility between tumbling behaviour and fixed anchoring. J Non-Newton Fluid. 1997;73: 127–152.
  • Farhoudi Y, Rey AD. Shear flows of nematic polymers. I. Orienting modes, bifurcations and steady state rheological predictions. J Rheol. 1993;37:289.
  • Farhoudi Y, Rey A. Ordering effects in shear flows of discotic polymers. Rheol Acta. 1993;32:207–217.
  • Farhoudi Y, Rey A. Shear flow of nematic polymers: Part II: Stationary regimes and start-up dynamics. J Non-Newton Fluid. 1993;49:175–204.
  • De Luca G, Rey AD. Point and ring defects in nematic under capillary confinement. J Chem Phys. 2007;127:104902.
  • De Luca G, Rey AD. Ring-like cores of cylindrically confined nematic point defects. J Chem Phys. 2007;126:094907.
  • De Luca G, Rey AD. Dynamic interactions between nematic point defects in the spinning extrusion defects of spiders. J Chem Phys. 2006;124:144904.
  • Gupta G, Hwang DK, Rey AD. Optical and structural modeling of disclinations lattices in carbonaceous mesophases. J Chem Phys. 2005;122:034902.
  • Hwang DK, Rey AD. Computational modeling of the propagation of light through liquid crystals containing twits disclinations based on the finite-difference time-domain method. Appl Opt. 2005;44:4513–4522.
  • Hwang DK, Rey AD. Computational studies of optical textures of twist disclinations loops in liquid-crystals films by using the finite-difference time-domain method. JOSA A. 2006;23:483–496.
  • Lhuillier D, Rey AD. Liquid-crystalline nematic polymers revisited. J Non-Newton Fluid. 2004;120:85–92.
  • Yan J, Rey A. Texture formation in carbonaceous mesophase fibers. Phys Rev E. 2002;65:031713.
  • Lydon JE. Silk the original liquid crystalline polymer. Liq Cryst Today. 2004;13:1–13.
  • Smalyukh I, Lavrentovich O. Topology in condensed matter. Edited by Monastyrsky. New York (NY): Springer Verlag; 2006. p. 205–250.
  • Meister R, Hallé M-A, Dumoulin H, Pieranski P. Structure of the cholesteric focal conic domains at the free surface. Phys Rev E. 1996;54:3771–3782.
  • Eelkema R, Pollard MM, Katsonis N, Vicario J, Broer DJ, Feringa BL. Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc. 2006;128:14397–14407.
  • Rey AD, Murugesan YK. Mechanical model for fiber-laden membranes. Continuum Mech Therm. 2011;23:45–61.
  • Murugesan YK, Rey AD. Thermodynamic model of structure and shape in rigid polymer-laden membranes. Macromol Theory Simul. 2010;19:113–126.
  • Zimmer J, White J. Disclination structures in the carbonaceous mesophase. Adv Liq Cryst. 1982;5:157–213.
  • Roland J-C, Reis D, Vian B. Liquid crystal order and tubulence in the planar twist of the growing Plant cell walls. Tissue Cell. 1992;24:335–345.
  • Murugesan YK, Pasini D, Rey AD. Microfibril organization modes in plant cell walls of variable curvature: a model system for two dimensional anisotropic soft matter. Soft Matter. 2011;7:7078–7093.
  • Bouligand Y. Le. Defects and textures in cholesteric analogues given by some biological systems. J Phys Colloques. 1975;36:C1-331–C1-336.
  • Murugesan YK, Pasini D, Rey AD. Defect textures in polygonal arrangements of cylindrical Inclusions in cholesteric liquid crystal matrices. Soft Matter. 2013;9:1054–1065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.