310
Views
19
CrossRef citations to date
0
Altmetric
Research Article

AIM and NBO analyses on hydrogen bonds formation in sugar-based surfactants (α/β-d-mannose and n-octyl-α/β-d-mannopyranoside): a density functional theory study

, &
Pages 784-792 | Received 24 Nov 2013, Accepted 20 Jan 2014, Published online: 10 Feb 2014

References

  • Robyt J. Essentials of carbohydrate chemistry. Berlin: Springer; 1998.
  • Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, Freeze HH. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology. 1998;8(3):285–295.
  • Toyota S, Fukushi Y, Katoh S, Orikasa S, Suzuki Y. Anti-bacterial defense mechanism of the urinary bladder, role of mannose in urine. J Urol. 1989;80(12):1816–1823.
  • Niehues R, Hasilik M, Alton G, Körner C, Schiebe-Sukumar M, Koch HG, Zimmer KP, Wu R, Harms E, Reiter K. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest. 1998;101(7):1414–1420.
  • Horton D. Carbohydrate chemistry, biology and medical applications. London: Elsevier; 2008. Chapter 1, The development of carbohydrate chemistry and biology; p. 1–28.
  • Goodby JW, Pfannemüller B, Welte W, Chin E. Liquid-crystalline glycolipids: towards understanding the roles of liquid crystals in biological and life processes. Liq Cryst. 2006;33:1229–1245.
  • Hashim R, Sugimura A, Minamikawa H, Heidelberg T. Nature-like synthetic alkyl branched-chain glycolipids: a review on chemical structure and self-assembly properties. Liq Cryst. 2012;39(1):1–17.
  • Konidala P, He L, Niemeyer B. Molecular dynamics characterization of n-octyl-β-d-glucopyranoside micelle structure in aqueous solution. J Mol Graph Model. 2006;25(1):77–86.
  • Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989;243(4890):500–507.
  • Fendler JH. Membrane mimetic chemistry: characterizations and applications of micelles, microemulsions, monolayers, bilayers, vesicles, host-guest systems, and polyions. New York: Wiley; 1982.
  • Lasic DD. Liposomes: from physics to applications. Amsterdam: Elsevier; 1993.
  • Nguan HS, Heidelberg T, Hashim R, Tiddy GJT. Quantitative analysis of the packing of alkyl glycosides: a comparison of linear and branched alkyl chains. Liq Cryst. 2010;37(9):1205–1213.
  • Hermansson M, von Heijne G. Inter-helical hydrogen bond formation during membrane protein integration into the ER Membrane. J Mol Biol. 2003;334(4):803–809.
  • Arneson LS, Katz JF, Liu M, Sant AJ. Hydrogen bond integrity between MHC class II molecules and bound peptide determines the intracellular fate of MHC class II molecules. J Immunol. 2001;167(12):6939–6946.
  • Cook AG, Wardell JL, Brooks NJ, Seddon JM, Martinez-Felipe A, Imrie CT. Non-symmetric liquid crystal dimer containing a carbohydrate-based moiety. Carbohyd Res. 2012;360(1):78–83.
  • Cook AG, Martinez-Felipe A, Brooks NJ, Seddon JM, Imrie CT. New insights into the transitional behaviour of methyl-6-O-(n-dodecanoyl)-α-d-glucopyranoside using variable temperature FTIR spectroscopy and X-ray diffraction. Liq Cryst. 2013;40(12):1817–1827.
  • Baker E, Hubbard R. Hydrogen bonding in globular proteins. Prog Biophys Mol Bio. 1984;44(2):97–179.
  • Gilli G, Gilli P. The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. New York (NY): Oxford University Press; 2009.
  • Grabowski SJ. Hydrogen bonding: new insights. Dordrecht: Springer; 2006, 539 P.
  • Schuster P, Zundel G, Sandorfy C. Hydrogen bond: recent developments in theory and experiments. Amesterdam: North-Holland publishing; 1976.
  • Nagy L, Milano F, Dorogi M, Agostiano A, Laczkó G, Szebényi K, Váró G, Trotta M, Maróti P. Protein/lipid interaction in the bacterial photosynthetic reaction center: phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochem. 2004; 43(40):12913–12923.
  • Sakya P, Seddon J. Thermotropic and lyotropic phase behaviour of monoalkyl glycosides. Liq Cryst. 1997;23(3):409–424.
  • Chong TT, Heidelberg T, Hashim R, Gary S. Computer modelling and simulations of thermotropic and lyotropic alkyl glycoside bilayers. Liq Cryst. 2007;34(2):349–363.
  • Emsley J. Very strong hydrogen bonding. Chem Soc Rev. 1980;9(1):91–124.
  • Claesson PM, Kjellin M, Rojas OJ, Stubenrauch C. Short-range interactions between non-ionic surfactant layers. Phys Chem Chem Phys. 2006;8(47):5501–5514.
  • Larson JW, McMahon TB. Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY-species (X, Y=F, Cl, Br, CN). Inorg Chem. 1984;23(14):2029–2033.
  • Fringant C, Tvaroska I, Mazeau K, Rinaudo M, Desbrieres J. Hydration of α-maltose and amylose: molecular modelling and thermodynamics study. Carbohyd Res. 1995;278(1):27–41.
  • Bader RFW. A quantum theory of molecular structure and its applications. Chem Rev. 1991;91(5):893–928.
  • Bader R, Essen H. The characterization of atomic interactions. J Chem Phys. 1984;80(5):1943.
  • Arnold WD, Oldfield E. The Chemical Nature of Hydrogen Bonding in Proteins via NMR:  J-Couplings, Chemical Shifts, and AIM Theory. J Amer Chem Soc. 2000;122(51):12835–12841.
  • Mosapour Kotena Z, Behjatmanesh-Ardakani R, Hashim R, Manickam Achari V. Hydrogen bonds in galactopyranoside and glucopyranoside: a density functional theory study. J Mol Model. 2013;19(2):589–599.
  • Espinosa E, Souhassou M, Lachekar H, Lecomte C. Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr Sec B. 1999;5(4):563–572.
  • Weinhold F. Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct (Theochem). 1997;398:181–197.
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88(6):899–926.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789.
  • Ditchfield R, Hehre W, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys. 1971;54(2):724.
  • Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA. Self-consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. J Chem Phys. 1982; 77(7):3654–3665.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A. 02. Wallingford, CT; 2009.
  • Dennington R, Keith T, Millam JGV. Version 5.0. 8. Semichem Inc, Shawnee Mission KS; 2008.
  • Bader R. Atoms in molecules: a quantum theory. New York (NY): Oxford University Press; 1995.
  • Popelier P. Atoms in molecules: an introduction. Upper Saddle River (NJ): Prentice Hall PTR; 2000, 164 p.
  • Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader R. AIM2000, version 2.0. Bielefeld, University of Applied Sciences; 2002.
  • Reed AE, Weinstock RB, Winhold FJ. Natural bond analysis. J Chem Phys. 1985;83:735–746.
  • Jeffrey GA, Saenger W. Hydrogen bonding in biological structures. Berlin: Springer-Verlag; 1994.
  • Appell M, Strati G, Willett JL, Momany FA. B3LYP/6-311++G** study of α- and β-d-glucopyranose and 1,5-anhydro-d-glucitol: 4C1 and 1C4 chairs, 3,OB and B3,O boats, and skew-boat conformations. Carbohyd Res. 2004;339:537–551.
  • Momany FA, Appell M, Willett JL, Schnupf U, Bosma WB. DFT study of α-and β-d-galactopyranose at the B3LYP/6-311++G** level of theory. Carbohyd Res. 2006;341:525–537.
  • Appell M, Willett JL, Momany FA. DFT study of α- and β-d-mannopyranose at the B3LYP/6-311++G** level. Carbohyd Res. 2005;340:459–468.
  • Schnupf U, Willett JL, Bosma WB, Momany FA. DFT study of α- and β-d-allopyranose at the B3LYP/6-311++G∗∗ level of theory. Carbohyd Res. 2007;342:196–216.
  • Sebastian S, Sundaraganesan N. The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. Spectrochimica Acta Part A: Mol Biol Spect. 2010;75(3):941–952.
  • Parr RG, Szentpály Lv, Liu S. Electrophilicity Index. J Amer Chem Soc. 1999;121(9):1922–1924.
  • Pearson RG, Pearson R. Chemical hardness: applications from molecules to solids. Weinheim: Wiley-VCH; 1997.
  • Parr RG, Zhou Z. Absolute hardness: unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters. Acc Chem Res. 1993;26(5):256–258.
  • Pearson RG. Recent advances in the concept of hard and soft acids and bases. J Chem Edu. 1987;64(7):561.
  • Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem. 1988;27(4):734–740.
  • Popelier PLA. Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem. A. 1998;102(10):1873–1878.
  • Popelier P, Bader R. The existence of an intramolecular C–H∙∙∙O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett. 1992;189(6):542–548.
  • Nazari F, Doroodi Z. The substitution effect on heavy versions of cyclobutadiene. Int J Quantum Chem. 2010;110(8):1514–1528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.