102
Views
2
CrossRef citations to date
0
Altmetric
Articles

The optimal cell gap determination of a liquid crystal wavefront corrector from a single photoelectric measurement

, , , , , , , , & show all
Pages 1569-1574 | Received 15 Apr 2014, Accepted 10 Jun 2014, Published online: 03 Jul 2014

References

  • Beckers JM. Adaptive optics for astronomy: principles, performance, and applications. Annu Rev Astron Astrophys. 1993;31:13–62. doi:10.1146/annurev.aa.31.090193.000305
  • Xuan L, Cao ZL, Mu QQ, Hu LF, Peng ZH. Liquid crystal wavefront correctors. In: Tyson R, editor. Adaptive optics progress [Internet]. InTech; 2012. [cited 2014 Apr 13]. Available from: http://www.intechopen.com/books/adaptive-optics-progress/liquid-crystal-wavefront-correctors. doi:10.5772/54265. ISBN:978-953-51-0894-8
  • Vasil’ev AA, Naumov AF, Shmal’gauzen VI. Wavefront correction by liquid-crystal devices. Sov J Quantum Electron. 1986;16:471–474. doi:10.1070/QE1986v016n04ABEH006221
  • Dou R, Giles MK. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder. Opt Lett. 1995;20:1583–1585. doi:10.1364/OL.20.001583
  • Dayton D, Gonglewski J, Restaino S, Martin J, Phillips J, Hartman M, Kervin P, Snodgress J, Browne S, Heimann N, Shilko M, Pohle R, Carrion B, Smith C, Thiel D. Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites. Opt Express. 2002;10:1508–1519. doi:10.1364/OE.10.001508
  • Restaino SR, Gates EL, Carreras RA, Dymale RC, Loos GC. Use of electro-optical devices for optical path-length (OPL) compensation. In: Proceedings of SPIE 2200, amplitude and intensity spatial interferometry II. 494; Jun 9; 1994. doi:10.1117/12.177265
  • Bonaccini D, Brusa G, Esposito S, Salinari P, Stefanini P, Biliotti V. Adaptive optics wavefront corrector using addressable liquid crystal retarders. In: Proceeding of SPIE 1334, current developments in optical engineering IV. 89; Nov 1; 1990. doi:10.1117/12.22840
  • Cao ZL, Mu QQ, Hu LF, Liu YG, Xuan L. Improve the loop frequency of liquid crystal adaptive optics by concurrent control technique. Opt Commun. 2010;283:946–950. doi:10.1016/j.optcom.2009.11.045
  • Restaino SR, Dayton D, Browne S, Gonglewski J, Baker J, Rogers S, Mcdermott S, Gallegos J, Shilko M. On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment. Opt Express. 2000;6:2–6. doi:10.1364/OE.6.000002
  • Burns DC, Underwood I, Gourlay J, Ohara A, Vass DG. A 256x256 sram-xor pixel ferroelectric liquid-crystal over silicon spatial light-modulator. Opt Commun. 1995;119:623–632. doi:10.1016/0030-4018(95)00414-4
  • Gauza S, Wang HY, Wen CH, Wu ST, Seed AJ, Dabrowski R. High birefringence isothiocyanato tolane liquid crystals. Jpn J Appl Phys. 2003;42:3463–3466. doi:10.1143/JJAP.42.3463
  • Gauza S, Li J, Wu ST, Spadlo A, Dabrowski R, Tzeng YN, Cheng KL. High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures. Liq Cryst. 2005;32:1077–1085. doi:10.1080/02678290500303007
  • Gauza S, Wen CH, Wu B, Wu ST, Spadlo A, Dabrowski R. High figure-of-merit nematic mixtures based on totally unsaturated isothiocyanate liquid crystals. Liq Cryst. 2006;33:705–710. doi:10.1080/02678290600703916
  • Thalhammer G, Bowman RW, Love GD, Padgett MJ, Ritsch-Marte M. Speeding up liquid crystal SLMs using overdrive with phase change reduction. Opt Express. 2013;21:1779–1797. doi:10.1364/OE.21.001779
  • Hu HB, Hu LF, Peng ZH, Mu QQ, Zhang XY, Liu C, Xuan L. Advanced single-frame overdriving for liquid-crystal spatial light modulators. Opt Lett. 2012;37:3324–3326. doi:10.1364/OL.37.003324
  • Kim HY, Hong SH, Rhee JM, Lee SH. Analysis of cell gap-dependent driving voltage in a fringe field-driven homogeneously aligned nematic liquid crystal display. Liq Cryst. 2003;30:1285–1292. doi:10.1080/02678290310001605893
  • Jin MY, Lee TH, Jang SJ, Bae JH, Kim JH. Dependence of cell gap on anisotropic phase separation of liquid crystal and polymer composites. Jpn J Appl Phys Part 1. 2007;46:1585–1589.
  • Nie XY, Lu RB, Xianyu HQ, Wu TX, Wu ST. Anchoring energy and cell gap effects on liquid crystal response time. J Appl Phys 2007;101. doi:10.1063/1.2734870.
  • Bruyneel F, De Smet H, Vanfleteren J, Van Calster A. Method for measuring the cell gap in liquid-crystal displays. Opt Eng. 2001;40:259–267. doi:10.1117/1.1337036.
  • Wu ST, Wu CS. Small-angle relaxation of highly deformed nematic liquid-crystals. Appl Phys Lett. 1988;53:1794–1796. doi:10.1063/1.99783.
  • Perregaux AE. Transient state liquid crystal image bar for electrophotographic printers. US Patent No.4,595,259; 1986.
  • Wang HY, Nie XY, Wu TX, Wu ST. Cell gap effect on the dynamics of liquid crystal phase modulators. Mol Cryst Liq Cryst. 2006;454:285–295. doi:10.1080/15421400600655824
  • Peng ZH, Liu YG, Yao LS, Cao ZL, Mu QQ, Hu LF, Xuan L. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap. Opt Lett. 2011;36:3608–3610. doi:10.1364/OL.36.003608
  • Wang QD, Peng ZH, Fang QQ, Li XP, Qi MJ, Liu YG, Yao LS, Cao ZL, Mu QQ, Xuan L. Response time improvement of liquid-crystal wavefront corrector using optimal cell gap of numerical computation. Opt Commun. 2013;305:236–239. doi:10.1016/j.optcom.2013.05.028
  • Ericksen JL. Conservation laws for liquid crystals. J Rheol. 1961;5:23–34. doi:10.1122/1.548883
  • Leslie FM. Some constitutive equations for liquid crystals. Arch Ration Mech Anal. 1968;28:265–283. doi:10.1007/BF00251810
  • Leslie FM. Continuum theory for nematic liquid crystals. Continuum Mech Thermodyn. 1992;4:167–175. doi:10.1007/BF01130288
  • Yuchi T, Matsuda J, Iimura Y. A new measurement method for stokes parameters using a wedge-shaped LC device. Mol Cryst Liq Cryst. 2004;423:51–59. doi:10.1080/15421400490494292
  • Kędzierski J, Raszewski Z, Rutkowska J, Perkowski P, Piecek W, Zieliński J, Andrzej Kojdecki M, Lipińska L, Miszczyk E. Optical methods for determining anisotropy of diamagnetic susceptibility and other material parameters of nematics by using cells of varying thickness. Mol Cryst Liq Cryst. 2005;437:223/[1467]–1241/[1485]. doi:10.1080/15421400590955370
  • Kedzierski J, Kojdecki MA, Raszewski Z, Perkowski P, Rutkowska J, Lipinska L, Miszczyk E. Determiniation of nematic liquid crystal material parameters by solving inverse problems for different planar cells. In: Proceedings of SPIE 4759, XIV conference on liquid crystals: chemistry, physics, and applications. 307; Jun 27; 2002. doi:10.1117/12.472167
  • Xianyu H, Gauza S, Song Q, Wu ST. High birefringence and large negative dielectric anisotropy phenyl-tolane liquid crystals. Liq Cryst. 2007;34:1473–1478. doi:10.1080/02678290701730065
  • Parish A, Gauza S, Wu ST, Dziaduszek J, Dabrowski R. New fluorinated terphenyl isothiocyanate liquid crystals. Liq Cryst. 2008;35:79–86. doi:10.1080/02678290701749917
  • Gauza S, Wu ST, Spadło A, Dabrowski R. High performance room temperature nematic liquid crystals based on laterally fluorinated isothiocyanato-tolanes. J Disp Technol. 2006;2:247–253. doi:10.1109/JDT.2006.878770
  • Gauza S, Wang HY, Wen CH, Wu ST, Seed AJ, D’cabrowski R. High birefringence isothiocyanato tolane liquid crystals. Jpn J Appl Phys. 2003;42:3463–3466. doi:10.1143/JJAP.42.3463

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.