377
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Columnar bis(pyridinium) ionic liquid crystals derived from 4-hydroxypyridine: synthesis, mesomorphism and emission properties

, , , &
Pages 381-392 | Received 21 Sep 2015, Accepted 02 Nov 2015, Published online: 07 Dec 2015

References

  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials. 2011;4:206–259. doi:10.3390/ma4010206.
  • Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–4204. doi:10.1021/cr0400919.
  • Imrie CT, Henderson PA. Liquid crystal dimers and oligomers. Curr Opin Colloid Interface Sci. 2002;7(5–6):298–311. doi:10.1016/S1359-0294(02)00092-4.
  • Imrie CT, Henderson PA. Liquid crystal dimers and higher oligomers: Between monomers and polymers. Chem Soc Rev. 2007;36(12):2096–2124. doi:10.1039/b714102e.
  • Gao Y, Slattery JM, Bruce DW. Columnar thermotropic mesophases formed by dimeric liquid-crystalline ionic liquids exhibiting large mesophase ranges. New J Chem. 2011;35:2910–2918. doi:10.1039/c1nj20715f.
  • Gordon CM, Holbrey JD, Kennedy AR, et al. Ionic liquid crystals: Hexafluorophosphate salts. J Mater Chem. 1998;8:2627–2636. doi:10.1039/a806169f.
  • Min GH, Yim T, Lee HY, et al. Synthesis and properties of ionic liquids: Imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc. 2006;27:847−852.
  • Kohnen G, Tosoni M, Tussetschlager S, et al. Counterion effects on the mesomorphic properties of chiral imidazolium and pyridinium ionic liquids. Eur J Org Chem. 2009;5601–5609. doi:10.1002/ejoc.200900730.
  • Patial P, Shaheen A, Ahmad I. Gemini pyridinium surfactants: synthesis and their surface active properties. J Surfact Deterg. 2014;17:929–935. doi:10.1007/s11743-014-1563-8.
  • Quagliotto P, Viscardi G, Barolo C, et al. Gemini pyridinium surfactants: synthesis and conductometric study of a novel class of amphiphiles. J Org Chem. 2003;68:7651–7660. doi:10.1021/jo034602n.
  • Chauhan V, Singh S, Kamboj R, et al. Self-assembly, DNA binding and cytotoxicity trends of ether functionalized gemini pyridinium amphiphiles. J Colloid Interface Sci. 2014;417:385–395. doi:10.1016/j.jcis.2013.11.059.
  • Bhadani A, Kataria H, Singh S. Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain gemini imidazolium and pyridinium amphiphiles. J Colloid Interface Sci. 2011;361:33–41. doi:10.1016/j.jcis.2011.05.023.
  • Zhou L, Jiang X, Li Y, et al. Synthesis and properties of a novel class of gemini pyridinium surfactants. Langmuir. 2007;23:11404–11408. doi:10.1021/la701154w.
  • Chauhan V, Singh S, Kaur T, et al. Self-assembly and biophysical properties of gemini 3-alkyloxypyridinium amphiphiles with a hydroxyl-substituted spacer. Langmuir. 2015;31:2956–2966. doi:10.1021/la5045267.
  • Liu HF, Zeng FX, Deng L, et al. Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chem. 2013;15:81–84. doi:10.1039/C2GC36630D.
  • Chinnappan A, Kim H. Transition metal based ionic liquid (bulk and nanofiber composites) used as catalyst for reduction of aromatic nitro compounds under mild conditions. RSC Adv. 2013;3:3399–3406. doi:10.1039/c2ra22639a.
  • Mahrova M, Pagano F, Pejakovic V, et al. Pyridinium based dicationic ionic liquids as base lubricants or lubricant additives. Tribol Int. 2015;82(A):245–254. doi:10.1016/j.triboint.2014.10.018.
  • Yabuhara T, Maeda T, Nagamune H, et al. Synthesis and antimicrobial characteristics of a novel biocide, 4, 4ʹ-(1, 6-dioxyhexamethylene) bis-(1-alkylpyridinium halide). Biocontrol Sci. 2004;9:95–103. doi:10.4265/bio.9.95.
  • Kourai H, Yabuhara T, Shirai A, et al. Syntheses and antimicrobial activities of a series of new bis-quaternary ammonium compounds. Eur J Med Chem. 2006;41:437–444. doi:10.1016/j.ejmech.2005.10.021.
  • Shirai A, Sumitomo T, Kurimoto M, et al. The mode of the antifungal activity of gemini-pyridinium salt against yeast. Biocontrol Sci. 2009;14:13–20. doi:10.4265/bio.14.13.
  • Shirai A, Ueta S, Maseda H, et al. Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast. Biocontrol Sci. 2012;17:77–82. doi:10.4265/bio.17.77.
  • Bhadani A, Singh S. Novel gemini pyridinium surfactants: synthesis and study of their surface activity, DNA binding, and cytotoxicity. Langmuir. 2009;25:11703–11712. doi:10.1021/la901641f.
  • Westphal E, Da Silva DH, Molin F, et al. Pyridinium and imidazolium 1,3,4-oxadiazole ionic liquid crystals: a thermal and photophysical systematic investigation. RSC Adv. 2013;3:6442–6454. doi:10.1039/c3ra23456h.
  • Causin V, Saielli G. Effect of asymmetric substitution on the mesomorphic behaviour of low-melting viologen salts of bis(trifluoromethanesulfonyl)amide. J Mater Chem. 2009;19:9153–9162. doi:10.1039/b915559g.
  • Causin V, Saielli G. Effect of a structural modification of the bipyridinium core on the phase behaviour of viologen-based bistriflimide salts. J Mol Liq. 2009;145:41–47. doi:10.1016/j.molliq.2008.11.013.
  • Casella G, Causin V, Rastrelli F, et al. Viologen-based ionic liquid crystals: induction of a smectic A phase by dimerisation. Phys Chem Chem Phys. 2014;16:5048–5051. doi:10.1039/c3cp54628d.
  • Bonchio M, Carraro M, Casella G, et al. Thermal behaviour and electrochemical properties of bis(trifluoromethanesulfonyl)amide and dodecatungstosilicate viologen dimers. Phys Chem Chem Phys. 2012;14:2710–2717. doi:10.1039/c2cp23580c.
  • Tanabe K, Yasuda T, Yoshio M, et al. Viologen-based redox-active ionic liquid crystals forming columnar phases. Org Lett. 2007;9:4271–4274. doi:10.1021/ol701741e.
  • Yang M, Stappert K, Mudring AV. Bis-cationic ionic liquid crystals. J Mater Chem C. 2014;2:458–473. doi:10.1039/C3TC31368A.
  • Robertson LA, Schenkel MR, Wiesenauer BR, et al. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases. Chem Commun. 2013;49:9407–9409. doi:10.1039/c3cc44452j.
  • Noujeim N, Samsam S, Eberlin L, et al. Mesomorphic and ion conducting properties of dialkyl(1,4-phenylene)diimidazolium salts. Soft Matter. 2012;8:10914–10920. doi:10.1039/c2sm26213d.
  • Bara JE, Hatakeyama ES, Wiesenauer BR, et al. Thermotropic liquid crystal behavior of gemini imidazolium-based ionic amphiphiles. Liq. Cryst. 2010;37:1587–1599. doi:10.1080/02678292.2010.521859.
  • Kumar S, Gupta SK. The first examples of discotic liquid crystalline gemini surfactants. Tetrahedron Lett. 2010;51:5459–5462. doi:10.1016/j.tetlet.2010.08.022.
  • Pana A, Ilis M, Micutz M, et al. Liquid crystals based on silver carbene complexes derived from dimeric bis(imidazolium) bromide salts. RSC Adv. 2014;4:59491–59497. doi:10.1039/C4RA11023D.
  • D’Anna F, Noto R. Di- and tricationic organic salts: an overview of their properties and applications. Eur J Org Chem. 2014;4201–4223. doi:10.1002/ejoc.201301871.
  • Laschat S, Baro A, Steinke N, et al. Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew Chem Int Ed. 2007;46:4832–4887. doi:10.1002/(ISSN)1521-3773.
  • Kaafarani BR. Discotic liquid crystals for opto-electronic applications. Chem Mater. 2011;23:378–396. doi:10.1021/cm102117c.
  • Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc. 2004;126:994–995. doi:10.1021/ja0382516.
  • Kumar S, Pal SK. Ionic discotic liquid crystals: synthesis and characterization of pyridinium bromides containing a triphenylene core. Tetrahedron Lett. 2005;46:4127–4130. doi:10.1016/j.tetlet.2005.03.201.
  • Pana A, Badea FL, Ilis M, et al. Effect of counterion on the mesomorphic behavior and optical properties of columnar pyridinium ionic liquid crystals derived from 4-hydroxypyridine. J Mol Struct. 2015;1083:245–251. doi:10.1016/j.molstruc.2014.11.059.
  • You F, Tweg RJ. Aromatic nucleophilic substitution with 4-hydroxypyridine. Tetrahedron Lett. 1999;40:8759–8762. doi:10.1016/S0040-4039(99)01694-9.
  • Johnson BL, Kitahara J, Weakley TJR, et al. Intramolecular [2+2] photocycloaddition of juxtaposed 4-pyridone moieties. Tetrahedron Lett. 1993;34:5555–5558. doi:10.1016/S0040-4039(00)73880-9.
  • Itahara T. Synthesis and liquid crystalline properties of novel pyridine derivatives. J Heterocyclic Chem. 2008;45:913–916. doi:10.1002/jhet.5570450341.
  • Yang QY, Pan M, Wei SC, et al. Photoluminescent 3D lanthanide MOFs with a rare (10,3)-d net based on a new tripodal organic linker. CrystEngComm. 2014;16:6469–6475. doi:10.1039/c4ce00586d.
  • Yang QY, Lehn JM. Bright white-light emission from a single organic compound in the solid state. Angew Chem Int Ed. 2014;53:4572–4577. doi:10.1002/anie.201400155.
  • Pana A, Chiriac FL, Secu M, et al. A new class of thermotropic lanthanidomesogens: Eu(III) nitrate complexes with mesogenic 4-pyridone ligands. Dalton Trans. 2015;44:14196–14199. doi:10.1039/C5DT01197C.
  • Lu JT, Lee CK, Lin IJB. Ionic liquid crystals derived from 4-hydroxypyridine. Soft Matter. 2011;7:3491–3501. doi:10.1039/c0sm01376e.
  • Butschies M, Mansueto M, Haenle JC, et al. Headgroups versus symmetry in congruent ion pairs: which one does the job in mesomorphic aryl guanidinium and aryl imidazolium sulphonates? Liq Cryst. 2014;41(6):821–838. doi:10.1080/02678292.2014.885600.
  • Kim D, Jon S, Lee HK, et al. Anion-directed self-organization of thermotropic liquid crystalline materials containing a guanidinium moiety. Chem Commun. 2005;5509–5511. doi:10.1039/b511517e.
  • Shimura H, Yoshio M, Hoshino K, et al. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals. J Am Chem Soc. 2008;130:1759–1765. doi:10.1021/ja0775220.
  • Verhoeven JW, Dirkk IP, De Boer TJ. Studies of inter- and intra-molecular donor-acceptor interactions—IV: Intramolecular charge transfer phenomena in substituted N-aralkyl-pyridinium ions. Tetrahedron. 1969;25:4037–4055. doi:10.1016/S0040-4020(01)82937-9.
  • Pragst F, Mitzner R. Intramolecular charge transfer luminescence of a donorethylsubstituted pyridinium ion. J Prakt Chem. 1987;329:301–310. doi:10.1002/(ISSN)1521-3897.
  • Suzuki K, Kobayashi A, Kaneko S, et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys Chem Chem Phys. 2009;11:9850–9860. doi:10.1039/b912178a.
  • Tanabe K, Yasuda T, Kato T. Luminescent ionic liquid crystals based on tripodal pyridinium salts. Chem Lett. 2008;37:1208–1209. doi:10.1246/cl.2008.1208.
  • Campbell PS, Yang M, Pitz D, et al. Highly luminescent and color-tunable salicylate ionic liquids. Chem Eur J. 2014;20:4704–4712. doi:10.1002/chem.201301363.
  • Jin XH, Chen C, Ren CX, et al. Bright white-light emission from a novel donor–acceptor organic molecule in the solid state via intermolecular charge transfer. Chem Commun. 2014;50:15878–15881. doi:10.1039/C4CC07063A.
  • Bandres I, Haro M, Giner B, et al. Optical and diffractive studies of pyridinium-based ionic liquids. Phys Chem Liq. 2011;49:192–205. doi:10.1080/00319100903366320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.