1,359
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Chiral periodic mesoporous organosilica in a smectic-A liquid crystal: source of the electrooptic response

, , , , &
Pages 497-504 | Received 07 Oct 2015, Accepted 09 Nov 2015, Published online: 08 Jan 2016

References

  • Crawford GP, Žumer S. Liquid crystals in complex geometries. London: Taylor & Francis; 1996.
  • Wehrspohn RB, Kitzerow H-S BK. Nanophotonic materials. Weinhem: Wiley-VCH; 2008.
  • Tsoi WC, O’Neill M, Aldred MP, et al. Distributed bilayer photovoltaics based on nematic liquid crystal polymer networks. Chem Mater. 2007;19:5475–5484. DOI:10.1021/cm071727q.
  • Levitsky IA, Euler WB, Tokranova N, et al. Hybrid solar cells based on porous Si and copper phthalocyanine derivatives. Appl Phys Lett. 2004;85:6245–6247. DOI:10.1063/1.1839280.
  • Ide A, Voss R, Scholz G, et al. Organosilicas with chiral bridges and self-generating mesoporosity. Chem Mater. 2007;19:2649–2657. DOI:10.1021/cm063026j.
  • Inagaki S, Guan S, Yang Q, et al. Direct synthesis of porous organosilicas containing chiral organic groups within their framework and a new analytical method for enantiomeric purity of organosilicas. Chem Commun. 2008;202–204. DOI:10.1039/B714163G.
  • Brethon A, Hesemann P, Rejaud L, et al. Functional chiral hybrid silica gels prepared from (R)- or (S)-binaphthol derivatives. J Organomet Chem. 2001;627:239–248. DOI:10.1016/S0022-328X(01)00758-6.
  • Wang P, Liu X, Yang J, et al. J. Chirally functionalized mesoporous organosilicas with built-in BINAP ligand for asymmetric catalysis. Mater Chem. 2009;19:8009–8014. DOI:10.1039/b913808k.
  • MacQuarrie S, Thompson MP, Blanc A, et al. Chiral periodic mesoporous organosilicates based on axially chiral monomers: transmission of chirality in the solid state. J Am Chem Soc. 2008;130:14099–14101. DOI:10.1021/ja804866e.
  • Giese M, De Witt JC, Shopsowitz KE, et al. Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. Appl Mat Interfaces. 2013;5:6854–6859. DOI:10.1021/am402266z.
  • Jayalakshmi V, Wood T, Basu R, et al. Probing the pore structure of a chiral periodic mesoporous organosilica using liquid crystals. J Mater Chem. 2012;22:15255–15261. DOI:10.1039/c2jm33089j.
  • Mwa M, Read LM, Wu X, et al. Chirality in ordered porous organosilica hybrid materials. Chem Asian J. 2015;10:70–82. DOI:10.1002/asia.201402682.
  • Zhang L, Liu J, Yang J, et al. Tartardiamide-functionalized chiral organosilicas with highly ordered mesoporous structure. Chem Asian J. 2008;3:1842–1849. DOI:10.1002/asia.200800160.
  • Zhuang TY, Shi JY, Ma C, et al. Chiral norbornane-bridged periodic mesoporous organosilicas. J Mater Chem. 2010;20:6026–6029. DOI:10.1039/c0jm01678k.
  • Wang P, Yang J, Liu J, et al. Chiral mesoporous organosilicas with R-(+)-Binol integrated in the framework. Microporous Mesoporous Mater. 2009;117:91–97. DOI:10.1016/j.micromeso.2008.06.015.
  • Kuschel A, Sievers H, Polarz S. Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces. Angew Chem Int Ed. 2008;47:9513–9517. DOI:10.1002/anie.v47:49.
  • Raynes EP. The use of bowed reverse twist disclination lines for measurement of long pitch lengths in chiral nematic liquid crystals. Liq Cryst. 2006;33:1215–1218. DOI:10.1080/02678290601008505.
  • Garoff S, Meyer RB. Electro-clinic effect at AC phase-change in a chiral smectic liquid-crystal. Phys Rev Lett. 1977;38:848–851. DOI:10.1103/PhysRevLett.38.848.
  • Seki T, McEleney K, Crudden CM. Enantioselective catalysis with a chiral, phosphane-containing PMO material. Chem Commun. 2012;48:6369–6371. DOI:10.1039/c2cc31247f.
  • Andersson G, Dahl I, Keller P, et al. Submicrosecond electrooptic switching in the liquid–crystal smectic-A phase – The soft-mode ferroelectric effect. Appl Phys Lett. 1987;51:640–642. DOI:10.1063/1.98341.
  • DeGennes PG. Prost J. The physics of liquid crystals. Clarendon: Oxford; 1994.
  • Delaye MJ. Coherence length and angular susceptibility divergences above a smectic-A to smectic-C phase transition observed by Rayleigh scattering. Phys (Paris) Colloq. 1979;40:C3-350–C3-355.
  • Li Z, Akins RB, DiLisi GA, et al. Anomaly in the dynamic behaviour of the electroclinic effect below the nematic-smectic-A transition. Phys Rev. 1991;43:852–857. DOI:10.1103/PhysRevA.43.852.
  • We also note that a very weak and slow decay process at ω ~ 103 s-1 was observed at temperatures> TAC + 2o C. Closer to TAC this was overwhelmed by the much larger (and growing) mode corresponding to dθ/dE. This very weak process is beyond the scope of this work, and we concentrate on the dominant processes close to TAC.
  • Berardi R, Kuball H-G, Memmer R, et al. Chiral induction in nematics A computer simulation study. J Chem Soc Faraday Trans. 1998;94:1229–1234. DOI:10.1039/a708446c.
  • Nemitz IR, Rosenblatt C. Forthcoming.
  • Ciesla U, Schüth F. Ordered mesoporous materials. Microporous Mesoporous Mater. 1999;27:131–149. DOI:10.1016/S1387-1811(98)00249-2.
  • Wegener WA, Dowben RM, Koester VJ. Time‐dependent birefringence, linear dichroism, and optical rotation resulting from rigid‐body rotational diffusion. J Chem Phys. 1979;70:622–632. DOI:10.1063/1.437541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.